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Abstract

In this work we present Canonical Autocorrelation Embeddings, a method for em-

bedding sets of data points onto a space in which they are characterized in terms of

their latent complex correlation structures, and where a proposed distance metric en-

ables the comparison of such structures. This methodology is particularly fitting to

tasks where each individual or object of study has a batch of data points associated

to it, as in for instance patients for whom several vital signs or other health related

parameters are recorded over time.

We apply this new methodology to characterize patterns of brain activity of co-

matose survivors of cardiac arrest, aiming to predict whether they would have a positive

neurological recovery. Clinicians routinely face the ethically and emotionally charged

decision of whether to continue life support for such patients or not. Both scenarios

have potentially grave implications on patients and their close ones, so regardless of

whether they believe they have enough information, clinicians are often forced to make

a prediction. Our results show that we can identify with high confidence a substantial

number of patients who are likely to have a good neurological outcome. Providing

this information to support clinical decisions could motivate the continuation of life-

sustaining therapies for patients whose data suggest it to be the right choice.
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1 Introduction

In many applications, machine learning is not intended as a tool to replace humans, but

rather as an instrument to augment human knowledge and enable experts to make better,

more informed decisions. Examples of such applications are common in public policy and

medicine. In these cases, machine learning can be particularly useful in two ways: as a

knowledge discovery tool and as a decision support device. In the first case, the goal is to

uncover hidden structures in data that can provide experts with a better understanding

of it. In the second case, interpretable algorithms that can accompany predictions with

justifications are key to help experts make more informed decisions. In this work, we

present Canonical Autocorrelation Embeddings, where the word autocorrelation refers to

correlations existing between subsets of features of a single set. This work builds on previ-

ous research on Canonical Autocorrelation Analysis (CAA), which enables the automatic

discovery of multiple-to-multiple correlation structures within a set of features. Through

the introduction of a distance metric between CAA correlation structures, we are able to

define a feature space embedding where each individual/object is represented by the set of

its multivariate correlation structures.

This methodology is particularly fitting to tasks where each individual or object of

study has a batch of data points associated to it, e.g., patients for whom several vital signs

or multiple channels of brain activity are recorded over time. In the new feature space

embedding, traditional machine learning algorithms that rely on distance metrics, such

as clustering and K-Nearest Neighbors (K-nn), can be used, with the caveat that unlike

traditional settings where each individual is represented by a single data point, in this case

each individual is represented by a set of CAA structures in the newly defined space.

Cardiac arrest is deadly, and amongst patients who survive there is a high risk of brain

injury. As the brain is deprived of oxygen during the cardiac arrest, many survivors are

in a coma state, and predicting positive neurological recovery for this patients remains a

challenging task for clinicians. Yet, prognosis is necessary, as clinicians need to constantly

decide whether to continue providing life-sustaining therapy to patients. Currently, prog-

nosis relies on observed patterns in EEG activity, and correlations are known to play an

important role. Strong correlations between channels are indicative of a poor neurological

state, and doctors have identified that correlations are relevant beyond what is evident to

the human eye. Theta-coma and alpha-coma are examples of such cases in which the EEG

recording seems to appears to show healthy variability between channels but, after some
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preprocessing, it becomes evident that the brain activity is dominated by simple, strong,

cyclic patterns. Given that correlation structures have been proven to be useful when esti-

mating the chances of positive recovery of comatose patients, this paper aims at applying

the proposed methodology to discover multiple-to-multiple correlation structures in each

patient’s EEG activity, and using the resulting characterization to predict neurological out-

comes. The goal of the project is to determine whether multivariate correlation structures

can be helpful in predicting the positive recovery of comatose survivors of cardiac arrest.

If successful, this could provide doctors with a prognosis tool that would enable them to

better identify patients for whom life-sustaining therapy should be prolonged because they

are likely to have a favorable recovery. Our results indicate that it is possible for our

method to identify a portion of the patients that, if provided the appropriate care, will go

on to have a positive recovery.

In the remainder of this paper, Section 2 presents a brief review of related work, both

from the methodological perspective as well as from the medical one. Section 3 discusses the

task and data in more detail. In Section 4 a new formulation and solution of the Canonical

Autocorrelation Analysis optimization problem is proposed, which provides better theo-

retical guarantees, extends it to non-linear correlation structures and enables experts to

prevent trivial correlations from obfuscating underlying signals. The proposed Canonical

Autocorrelation Embeddings method is also described in detail in this section, as well as

the use of a K-nn algorithm based on the discovered correlation structures. Section 5 con-

tains the experimental results, Section 6 discusses our findings and Section 7 presents the

conclusions and future work.

2 Related work

2.1 Component and Correlation Analysis

Canonical Correlation Analysis is a statistical method first introduced by [15], useful for

exploring relationships between two sets of variables. It is used in machine learning, with

applications to medicine, biology and finance, e.g., [11][6][22][23]. Sparse CCA, an `1

variant of CCA, was proposed by [23][24]. This method adds constraints to guarantee

sparse solutions, which limits the number of features being correlated. Given two matrices

X ∈ Rn×p and Y ∈ Rn×q, CCA aims to find linear combinations of their columns that

maximize the correlation between them. Usually, X and Y are two matrix representations
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for one set of objects, so that each matrix is using a different set of variables to describe

them. Assuming X and Y have been standardized, the constrained optimization problem

is shown in Equation 1. When c1 and c2 are small, solutions will be sparse and thus only

a few features are correlated.

maxu,vu
TXTY v

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(1)

The extension of Sparse CCA for discovery of multivariate correlations within a single

set of features to study brain imaging has been explored by [11] and [6]. Using the no-

tion of autocorrelation, the authors attempt to find underlying components of functional

magnetic resonance imaging (fMRI) and electroencephalogram (EEG), respectively, that

have maximum autocorrelation. The types of data used in these work is ordered, both

temporally and spatially. To find autocorrelations, X is defined as the original data matrix

and Y is constructed as a translated version of X, such that Yt = Xt+1.

Canonical Autocorrelation Analysis (CAA) is a generalized approach to discovering

multiple-to-multiple correlations within a set of features which we have developed previ-

ously [4]. Figure 1 illustrates the different use cases of Sparse CCA and CAA. That work

has also described the use of such structures in data for anomaly detection. In this paper,

we present a different formulation of the CAA optimization problem that provides better

theoretical guarantees and allows us to extend the method to the discovery of non-linear

correlations by incorporating penalties for disjoint support directly. Additionally, this new

formulation also allows for the user to select sets within which correlations are forbidden,

which is useful when e.g. trivial correlations should be avoided. More importantly, we

introduce a distance metric between canonical autocorrelation structures, which gives sub-

stantially more power to CAA-based methodology, making it useful for various learning

tasks, such as clustering and classification on datasets and distributions.

The comparison of correlation structures and principal components has been explored

in the literature for decades. Most prominently, [18] discusses comparison of principal

components between groups. To do so they propose a metric inspired by the concept of

congruence coefficient [17], which is nothing but the cosine of the angle between the two

p-dimensional vectors. Also related to our task is [10], where a metric between covariance

matrices is proposed. The notion of a distance metric between canonical autocorrelation
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Figure 1: Comparison between scenarios where Sparse CCA and CAA can be used.
(Left) Sparse CCA set up: X and Y are two matrices where the rows correspond to the
same items but the columns represent separate sets of variables. Sparse CCA finds sparse
multiple-to-multiple linear correlations between subsets of the features in matrix X and
subsets of features in matrix Y . (Right) CAA set up: In cases where there is no natural
or intuitive division of the features into two sets, a possible division represented by the
dotted line is no longer given. Instead, all features are part of one matrix X. CAA finds
multiple-to-multiple correlations between subsets of features in this matrix.

structures differs from these in that CAA finds a factorization of the correlation matrix

where each portion of the correlation matrix is expressed as the outer product of a pair of

orthonormal vectors, which define a bi-dimensional space onto which the projected data

follows a linear correlation. Section 4.3 discusses the proposed metric.

2.2 Prognosis of Comatose Survivors of Cardiac Arrest

In the United States, every year about 350.000 people suffer a sudden out-of-hospital car-

diac arrest. The Cardiac Arrest Registry to Enhance Survival (CARES) National Summary

Report indicates that for 2016 survival to hospital discharge was 10.8%, and survival with

good outcome was 8.5% [19]. Moreover, a study considering all patients admitted to the

intensive care unit in a general hospital in the United Kingdom between 1998 and 2003

after a cardiac arrest in the past 24 hours, shows that an estimated two-thirds of the pa-

tients dying after out-of-hospital cardiac arrest die due to neurological injury. Section 3

details the outcome statistics in the data set we work with.

The prevalence of cardiac arrest and the high risk of neurological injury amongst sur-

vivors has motivated decades of medical research focused on assessing and improving neu-

rological outcomes for comatose survivors of cardiac arrest. Early prognosis of recovery

has been explored [1, 8, 3] in an attempt to augment medical knowledge and provide deci-

7



sion support systems for a decision that doctors continuously need to make in this cases:

should life-sustaining therapies be continued? Meaningful neurological recoveries are rare,

and treatment can be long, expensive and difficult for family members and caregivers [3],

as a result, withdrawal and withholding of life support are practiced often [9, 12], even in

countries where the legislation forbids it [9]. The impact of specific treatments has also

been studied, with several researchers indicating that mild hypothermia treatment might

mitigate brain damage [2, 16, 13]. Such research has also suggested that current practice

leads to life-sustaining therapies been withdrawn too early [13], and there is a concern that

“therapeutic nihilism” and inappropriate care withdrawal currently undermines postarrest

critical care [7, 20].

Improving care and making better decisions requires more predictive power and a better

understanding of the brain in the periods after cardiac arrest. Research on trajectory

modeling using EEG signals [8] indicates that there are signals in the brain that would

make it possible to improve prediction accuracy of positive neurological recovery. Amongst

what is currently known by doctors regarding good/bad brain activity, correlations are a

fundamental piece. Strongly correlated channels are a bad sign, but it has been found

that not all negative patterns of correlation are visible to the naked eye, with theta coma

being such an example. Motivated by this, our goal is to characterize patients in terms of

their multivariate, non-linear structures of correlation and use the resulting featurization

to predict their neurological outcome. In section 3 we describe the data in detail.

3 Data

The data used in this study corresponds to 451 comatose survivors of cardiac arrest, col-

lected between 2010 and 2015. For each patient, featurized EEG signals at one-per-second

resolution are available. The total number of features is 66 and they include artifact de-

tector, seizure probability, amplitude-integrated EEG for the left and right hemisphere,

spike detections, and supression ratios, among other features that doctors have identified

as informative. The feature generation and selection was performed by clinicians and the

raw EEG channels are not available. The full list of features can be found in Appendix A.

For each patient it is known whether the patient survived. For those who lived it is

known whether they had a good or bad outcome, although there is high variance as to what

constitutes a bad outcome, as this may or may not refer to their neurological condition.

For those who died the cause of death is available. Figure 2 shows this information in
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Figure 2: Patient labels. Survival and outcome (Left), and cause of death (Right).

detail.

4 Methodology

4.1 Canonical Autocorrelation Analysis

In this section we present a new formulation and solution for Canonical Autocorrelation

Analysis (CAA). Even though it is not radically different from the existing CAA formu-

lation, it provides better guarantees and makes it possible to extend the method in key

directions, as discussed in Section 4.2, substantially increasing the method’s descriptive

and predictive power.

The goal of CAA is to find multivariate sparse correlations within a single set of vari-

ables. In the Sparse CCA framework, this could be understood as having identical matrices

X and Y . Applying Sparse CCA when X = Y results in solutions u = v, corresponding to

sparse PCA solutions for X [24]. The existing formulation of CAA [4] overcomes this issue

by introducing a new constraint to induce disjoint support, which is shown in Equation 2.

maxu,vu
TXTXv

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

uT v = 0

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(2)

This formulation enforces that u and v must be orthogonal vectors. However, that is
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not equivalent to having disjoint support, as there can be cases of orthogonal vectors with

overlapping support. Hence, we incorporate the penalty for disjoint support directly, as

shown in Equation 3.

maxu,vu
TXTXv

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

m∑
i=1

|uivi| = 0

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(3)

Understanding this as a new generalization of the PMD decomposition [24], the solution

for CAA is analogous to that of other PMD-based approximations, although necessary

adjustments have to be made to account for the additional constraint. Note that in the

CAA optimization problem seen in Equation 3, the equality constraint can be seen as a

weighted L1 penalty when either u or v are fixed. Replacing the equality constraint by

an inequality constraint gives a biconvex problem, while resulting in the same solution.

Therefore, we can solve it through alternate convex search [14], as shown in Algorithm 1.

Algorithm 1: CAA via alternate convex search

1 Initialize v s.t. ||v||2 = 1;
2 repeat

3 u← arg max
u

uTXTXv

4 s.t. ||u||22 ≤ 1, ||u||1 ≤ c1,
∑m

i=1 |ui||vi| = 0

5 v ← arg max
v

uTXTXv

6 s.t. ||v||22 ≤ 1, ||v||1 ≤ c1,
∑m

i=1 |ui||vi| = 0

7 until u, v converge;
8 d← uTXTXv;

At each iteration, the resulting convex problem can be solved through the Karush-

Kuhn-Tucker (KKT) conditions. Without loss of generality, assuming v is fixed and we are

optimizing for u, the optimization problem in Lagrangian form can be written as formulated

in Equation 4.
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min
u
−uTXTXv +

m∑
i=1

(λ1||vi||1 + λ2)||ui||1

+λ3||u||22 − λ2c1 − λ3

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 10 ≤ λ1, 0 ≤ λ2, 0 ≤ λ3

(4)

The KKT conditions are:

• Stationarity: 0 ∈ −XTXv + 2λ3u+ Γ

for Γi = (λ2 + λ1|vi|)sgn(ui) ∀i = 1, ...,m

• Complementary slackness:

λ1
∑m

i=1 |ui||vi| = 0; λ2(||u||21 − c1) = 0; λ3(||u||22 − 1) = 0

• Primal feasibility:
∑m

i=1 |ui||vi| ≤ 0; ||u||21 − c1 ≤ 0; ||u||22 − 1 ≤ 0

• Dual feasibility: 0 ≤ λi, i = 1, 2, 3

From complementary slackness and primal feasibility, either λ3 = 0 and ||u||2 ≤ 1, or

λ3 > 0 and ||u||2 = 1. Assuming λ3 > 0 and solving the stationarity condition, we obtain

that for i = 1, ...,m, Equation 5 holds, where Sλ(x) is the soft-thresholding operator.

2λ3ui = S(λ1|vi|+λ2)((X
TXv)i) (5)

From complementary slackness, λ3 must be such that ||u||2 = 1, therefore, Equation 6

is obtained.

u =
SΦ(v)(X

TXv)

||SΦ(v)(XTXv)||22
(6)

Φ(v, λ1, λ2) : Rm −→ Rm

vi −→ λ1|vi|+ λ2

Additionally, λ1 must be such that
∑m

i=1 |ui||vi| = 0, which will be guaranteed by

setting λ1 = max
i

|(XTXv)i|
|vi|

. Finally, either λ2 = 0 results in a feasible solution, or λ2 is
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chosen such that ||u||1 = c1, which can be done through a binary search. The pseudo-code

for solving the convex problems at each iteration of the alternate convex search is provided

in Algorithm 2, where we solve for u without loss of generality.

Algorithm 2: CAA alternate convex search iteration via KKT conditions

1 λ1 = max
i

|(XTXv)i|
|vi|

;

2 if || SΦ(vλ1,0)(X
TXv)

||SΦ(vλ1,0)(X
TXv)||22

||1 ≤ c1 then

3 return u =
SΦ(vλ1,0)(X

TXv)

||SΦ(vλ1,0)(X
TXv)||22

4 else

5 Binary search to find λ2 s.t. || SΦ(vλ1,λ2)(X
TXv)

||SΦ(vλ1,λ2)(X
TXv)||22

||1 = c1;

6 return u =
SΦ(vλ1,λ2)(X

TXv)

||SΦ(vλ1,λ2)(X
TXv)||22

7 end

To find multiple pairs of CAA canonical vectors, Algorithm 1 can be repeated itera-

tively, replacing XTX with a matrix in which found correlations are removed, as shown in

Equation 7.

XTX − d(uvT + vuT ) (7)

4.2 Non-linear and forbidden correlations

In this section we propose a way of tackling two of the main current limitations of CAA

by enabling the discovery of non-linear correlations and allowing practitioners to manually

select pairwise correlations that should be avoided.

When looking for latent structures of correlation in data, it is desirable to allow for the

discovery of non-linear correlations. This is particularly true in the application presented

in this paper, where the original data corresponds to waveforms. Given the Weierstrass

approximation theorem [5], the most trivial way of doing so is by extending the feature

space with powers of the original features. However, the current CAA formulation would

likely result in a feature being correlated with transformations of itself. Similarly, a current

limitation of the application of CAA is the fact that often datasets contain sets of features

that are trivially correlated. For example, in the data we are working with in this project

several features correspond to basic statistics of the amplitude integrated EEG.
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To overcome both these limitations, we modify the optimization problem to extend the

disjoint support to sets of features. Assuming each feature xi has a subset Si of feature

indices associated to it, which indicates which features should not be correlated with xi,

the resulting optimization problem is presented in Equation 8.

maxu,vu
TXTXv

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

m∑
i=1

∑
j∈Si

|uivi| = 0

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(8)

The new constraint for disjoint support can still be understood as a weighted-L1 penalty

at each iteration of the biconvex algorithm. Hence, the optimization algorithm can still be

solved in the way presented in Section 4.1, with the only difference that the parameters of

the soft-thresholding operator will change.

4.3 Canonical Autocorrelation Embeddings

CAA allows us to find bidimensional projections where the data follows a linear distribution.

Each axis of these projections corresponds to a linear combination of the original features,

i.e., each CAA canonical space is defined by a pair of vectors u, v ∈ Rm.

Since the correlations discovered by CAA are defined by pairs of vectors in Rm, we

can measure the distance between two CAA canonical spaces in terms of the Euler angles

defining the transformation from one pair of axes to the other. Given that measuring

the angle between two vectors is equivalent to measuring the arc between them, and that

||u(i)||2 = ||v(i)||2 = 1 ∀i, the distance between two CAA canonical spaces C1 and C2 can

be defined as shown in Equation 9. Note that the minimum is simply finding the best of

two possible ways of doing the transformation.

d(C1, C2) = min(||u1 − u2||2 + ||v1 − v2||2 , ||u1 − v2||2 + ||v1 − u2||2) (9)

It is easy to prove that this function satisfies the necessary conditions for well-defined

distance, see Appendix B for the proof. Moreover, if two CAA canonical spaces represent

the same correlation structure, the vectors defining them must be equal. This stems from
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the fact that such correlation structure would take the form of a matrix Co ∈ Rm×m.

Therefore, Equation 10 can be seen as a system of linear equations with at most one

solution.

Co = uvT (10)

Even though we believe this is a good distance metric that captures what we desire to

measure, we do not claim this is the only nor the best such metric, and the exploration

of better suited metrics could yield even better results. Appendix C contains a short

discussion of why principal angles, one of the metrics most commonly used to measure

distance between subspaces and which naturally comes to mind in this setting, is not

well-suited for this task.

4.4 K-Nearest Correlations

Having a distance metric enables us to use a wide range of machine learning algorithms,

such as clustering and K-nn. However, there is a caveat that must be taken into account.

While in most traditional cases each data point in the metric space represents an object of

study, e.g., a patient, in our case each individual has a set of CAA correlation structures

associated to it, which means that each object/individual is represented by multiple points

in our embedded space.

This setting can be incorporated into the K-nn framework by calculating the class

probability for each correlation structure through the votes of their k nearest neighbors,

and then aggregating over all correlations associated to an object using log-odds,as shown

in Equation 11, where np,i,j denotes the class label of the jth neighbor of the ith correlation

of patient p.

qi =

∑k
j=1 np,i,j

k

ŷp = log(

mp∏
i=1

qi
1− qi

)

(11)

However, it is likely that some type of correlation structures will be common to both

classes, while others are discriminative. To reduce noise and allow for those discriminative

correlations to lead the decision, we incorporate a threshold t, so that log-odds are only
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calculated over those correlation structures with a class probability that is discriminative

enough, as shown in Equation 12. Incorporating this threshold also enhances interpretabil-

ity, as it reduces the number of structures that are used for making a prediction, making

it easier for practitioners to understand which correlation structures are relevant for the

task at hand. The parameters k, indicating the number of neighbors, and t can be tuned

through cross-validation.

ŷp = log(

mp∏
i=1

I(|qi−0.5|>t)
qi

1− qi
) (12)

5 Experiments

Our goal is to improve care given to comatose survivors of cardiac arrest through a decision

support system that can help improve reliability of clinical prognosis. To do so, we propose

a way of characterizing patients through their latent multivariate structures of correlation,

and using the resulting featurization to build a predictive model.

The first fundamental decision to make is what data and labels to use for training. As it

can be seen in Figure 2, the main cause of death for patients in our data set is withdrawal of

life-sustaining therapies for perceived poor neurological prognosis. However, as mentioned

in Section 2, it is believed that in many cases treatment is been withdrawn too early, hence

including this data in our training would have a high risk of introducing bias, as the model

could learn and replicate the mistakes doctors are making. Considering this and the fact

that our goal is to predict neurological outcome, we train our model using those patients

who lived, making our target label whether they had a good or a bad outcome.

For each patient, their entire stay is recorded, with lengths of stay varying from less

than an hour to more than 50 hours. We select those patients who stayed at least 36 hours

under monitoring, and use CAA to characterize a period of time of two hours after 34 hours

of monitoring. The specific question the proposed model answers is: can the correlations

present over a period of time of two hours after 36 hours of monitoring be predictive of

whether the patient will have a good neurological outcome? The reason why only two hours

are considered is because it can be expected that the state of the patient fluctuates during

their state, therefore periods of time that are two long might obfuscate important patterns

of correlation. Figure 3 illustrates the characterization of patients’ EEG with CAA.
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Figure 3: Diagram illustrating CAA patient characterization using EEG features as input
data.

To avoid spurious correlations from misleading the model, only discovered correlations

with an R2 > 0.25 are considered. Moreover, given that beyond a certain threshold the

distance metric is not informative since the correlations are no longer related, we can assume

our set of correlations to be not-complete and only take into account those distances smaller

than
√

2, a threshold that corresponds to a 90◦ rotation over one axis. Using the resulting

distance matrix we apply K-Nearest Correlations on the space of CAA Embeddings. The

prediction results obtained through 10-fold cross-validation, tuning parameters k and t

through 10-fold cross-validation as well, are presented in Figures 4, 5a, 6a, 7a.

We also fit a Logistic Regression with Lasso regularization [21] to predict recovery 36

hours after cardiac arrest. Given that Logistic Regression is not suited for sets, but rather

takes as input individual data points, we explore two avenues. The first approach consists

on taking the last data point after 36 hours of monitoring, that is, the recording at one time

step. For the remainder of the paper, we will refer to this approach as Logistic regression

on points. In the second approach, in an attempt to provide the model with information

pertaining the two hours used by the Canonical Autocorrelation Embedding model, we

calculate quintiles for each feature over this two hours, and provide them as features to the

model. For the remainder of the paper, we will refer to this approach as Logistic regression

on sets. The choice of the λ parameter is made through 10-fold cross-validation. The
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Figure 4: ROC curves displaying false positive rate in x-axis and true positive rate in
y-axis showing performance of CAA Embeddings, Logistic Regression on sets, Logistic
Regression on points, K-nn on sets and K-nn on points.
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results are included in Figures 4, 5b, 6b, 7b. Furthermore, to be able to better assess the

role of the CAA Embeddings, we also include results for K-nn using Euclidean distance

taking the same inputs as the Logistic Regression models, which we will refer to as K-nn

on points and K-nn on sets, respectively.

(a) CAA Embeddings. AUC: 0.71 with 95%
confidence interval [0.6, 0.82].

(b) Logistic Regression on sets. AUC: 0.81
with 95% confidence interval [0.71, 0.91].

Figure 5: ROC curves with 95% confidence intervals displaying false positive rate in
x-axis and true positive rate in y-axis.

6 Discussion

The results presented in Section 5 show that the proposed methodology has predictive

power, and the comparison to K-nn using Euclidean distance on points and set-aggregated

features highlights the role of CAA Embeddings. The proposed methodology has an Area

Under the Curve (AUC) of 0.71 with a 95% confidence interval [0.6, 0.82], while Logistic

Regression with Lasso regularization has an AUC of 0.81 with a 95% confidence interval

[0.71, 0.91]. From this, it can be concluded that the Logistic Regression approach has

overall better performance. However, in applications like the one explored in this paper,

machine learning would not be used to automate a process. Rather, it would be used

as a decision support system that only makes a recommendation when the algorithm has
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(a) CAA Embeddings. (b) Logistic regressing on sets.

Figure 6: ROC curve with 95% confidence intervals displaying false positive rate in x-
axis and true positive rate in y-axis, with x-axis in log-scale to emphasize area of low-false
positive rate.

high confidence on its prediction. In this circumstances, it is important to observe the

performance at low false positive rates and false negative rates, given that these are the

thresholds that would be used in practice. The ROC curves with the x-axis in logarithmic

scale to emphasize the low false positive and low false negative rates are shown in Figure

6 and Figure 7, respectively. The performance of CAA Embeddings at low false positive

rates is promising, while the performance of Logistic Regression at both low false positives

and low false negative rates is not above random. Hence, the apparent good performance

of Logistic Regression reflected in its AUC is misleading in this case, as the model could

not be used for clinical decision support. Meanwhile, the proposed model can identify with

high confidence patients who will likely go on to have a good neurological outcome.

Even though several voices within the medical community advocate for maintaining

life-sustaining therapies for at least 72 hours [7, 20], the burden associated to continuing

life-support for patients who will not have a positive neurological recovery still leads doctors

to end treatment when they do not see signs of positive outcomes. Hence, being able to

identify with high confidence patients that will recover with good outcome has the potential

to save lives. Figure 6a shows that we can identify 25% of the patients that will recover with
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(a) CAA Embeddings. (b) Logistic Regression on sets.

Figure 7: ROC curves with 95% confidence intervals displaying false negative rate in x-
axis and true negative rate in y-axis, with x-axis in log-scale to emphasize area of low-false
negative rate.

little chance of incurring in false positives. And even if we are conservative and consider

the lower bound of the confidence interval, that would correspond to 12.5% of patients that

go on to recover.

It is hard to evaluate the immediate medical impact of these findings in the absence

of clinical context. To appropriately estimate the potential impact of such a decision

support system in terms of lives saved, it would be necessary to compare against physicians’

assessments. Therefore, the results found are promising, but at this point there are no direct

clinical implications. Our model would only be useful if it had the potential to change the

prior beliefs a clinician has regarding the outcome of a patient, a comparison that would

require access to clinicians’ prognosis throughout the patients’ stay.

From the ROC curve in Figures 6a and 7a, it can be seen that it is easier for the model

to determine if patients will have a positive neurological recovery than if they will not.

However, this must be taken with a grain of salt, and we cannot yet conclude that corre-

lation structures in the brain are more useful to predict positive than negative outcomes.

The available labels denote positive/negative outcome, but this is not limited to neurolog-

ical activity. A patient could have a positive neurological recovery but have other types of
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complications, which would result in a bad outcome label. Meanwhile, the positive recovery

label is much more homogeneous and is sure to indicate positive neurological recovery (as

well as positive recovery in other arrays). The fact that some patients who had positive

neurological recovery could be labeled as having a bad outcome might be adding noise,

and it is possible that a cleaner dataset would increase predictive power for those patients

who will not go on to have a good neurological outcome.

7 Conclusions and future work

Cardiac arrest is a leading cause of death around the world, coma after cardiac arrest

is common, and good neurological recovery is rare. Everyday, clinicians are tasked with

making a prediction that determines whether they will continue life-sustaining therapies

for these patients or not. Motivated by the emphasis the clinicians place on potential

informativeness of the correlation structures in EEG data, we have proposed a way to

characterize and compare patients based on the latent structures of multivariate non-linear

correlations, and use such information to predict positive neurological recovery. To do

so, we have extended Canonical Autocorrelation Analysis to allow for the discovery of

non-linear correlations and for the enforcement of disjoint support for sets of features in

order to prevent potentially strong but trivial correlations from obfuscating parsimonious

but important structures. Additionally, we have proposed Canonical Autocorrelation Em-

beddings to enable the comparison of discovered correlation structures, making it possible

to leverage the power of machine learning methodologies that rely on the use of distance

metrics.

Future work would require training and validating the model with more data. It is

reasonable to believe that there is high variability across patients, hence more data of more

subjects is crucial to ensure reproducibility of results. It would also be desirable to obtain

better quality labels for the negative outcomes, as at this point bad outcomes of different

kinds are conflated under a single label. Additionally, taking into account the results

presented in the literature, the power of the model could be enhanced by incorporating

trajectory modeling, rather than using only two hours of data for training the models in

the way that currently ignores their sequential structure.

Applying Canonical Autocorrelation Embeddings to the raw EEG channels rather than

the aggregated featurization of data would also be interesting to explore once that data

becomes available to us. Our motivation to characterize brain activity with CAA comes
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from the importance clinicians give to correlations. However, the correlations they know

to be informative are across raw EGG channel measurements, and it is likely that at the

current level of data aggregation a big portion of the information is obfuscated.

Finally, there is a source of bias in our model given that the data with which we train

it is limited to those patients for whom life-sustaining therapies were continued. If patients

for whom treatment was stopped early are significantly different from those in our training

set, which is very likely the case, our model could perform poorly on this faction of the

population. Tackling this selective labeling problem in a way that allows us to incorporate

doctors’ knowledge while not reproducing their mistakes is a key phase in the path to

successfully using machine learning to save human lives.
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A EEG features

Below is the complete list of features available and used in this study.

Feature Details

Artifact Intensity Muscle
Artifact Intensity Chew
Artifact Intensity V-Eye
Artifact Intensity L-Eye
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Artifact Detector
Seizure Probability
aEEG, Left Hemisphere Max
aEEG, Left Hemisphere Min
aEEG, Left Hemisphere Median
aEEG, Left Hemisphere Q75%
aEEG, Left Hemisphere Q25%
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aEEG, Right Hemisphere Max
aEEG, Right Hemisphere Min
aEEG, Right Hemisphere Median
aEEG, Right Hemisphere Q75%
aEEG, Right Hemisphere Q25%
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Left Hem. Max
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Left Hem. Min
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Left Hem. Median
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Left Hem. Q75%
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Left Hem. Q25%
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Right Hem. Max
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Right Hem. Min
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Right Hem. Median
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Right Hem. Q75%
aEEG+(custom filt.)(LFF0.16sec, HFF(off), custom aEEG 2-20 512), Right Hem. Q25%
PeakEnvelope, 1 - 20 Hz, Left Hemisphere
PeakEnvelope, 1 - 20 Hz, Right Hemisphere
Spike Detections
Suppression Ratio, Left Hemisphere
Suppression Ratio, Right Hemisphere
FFT Power, 1 - 4 Hz, Left Hemisphere
FFT Power, 1 - 4 Hz, Right Hemisphere
FFT Power, 4 - 8 Hz, Left Hemisphere
FFT Power, 4 - 8 Hz, Right Hemisphere
FFT Power, 8 - 13 Hz, Left Hemisphere
FFT Power, 8 - 13 Hz, Right Hemisphere
FFT Power, 13 - 20 Hz, Left Hemisphere
FFT Power, 13 - 20 Hz, Right Hemisphere
FFT Alpha/Delta, 8-13/1-4 Hz, Left Hemisphere
FFT Alpha/Delta, 8-13/1-4 Hz, Right Hemisphere
Rhythmicity Spectrogram, Left Hemisphere 1-4Hz
Rhythmicity Spectrogram, Left Hemisphere 4-8Hz
Rhythmicity Spectrogram, Left Hemisphere 8-13Hz
Rhythmicity Spectrogram, Left Hemisphere 13-20Hz
Rhythmicity Spectrogram, Right Hemisphere 1-4Hz
Rhythmicity Spectrogram, Right Hemisphere 4-8Hz
Rhythmicity Spectrogram, Right Hemisphere 8-13Hz
Rhythmicity Spectrogram, Right Hemisphere 13-20Hz
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B Proof: CAA distance metric

In this section we prove that the metric defined to measure the distance between CAA

canonical spaces satisfies the necessary conditions to be a well-defined distance.

d(C1, C2) = min(||u1 − u2||2 + ||v1 − v2||2 , ||u1 − v2||2 + ||v1 − u2||2) (13)

• Non-negativity: stems directly from the non-negativity of the `2 norm, together with

the fact that the set of non-negative real numbers is closed under the summation and

minimum operations.

• Identity:

0 = min(||u1 − u2||2 + ||v1 − v2||2 , ||u1 − v2||2 + ||v1 − u2||2)

⇔ 0 = ||u1 − u2||2 + ||v1 − v2||2 ∨ 0 = ||u1 − v2||2 + ||v1 − u2||2
⇔ (0 = ||u1 − u2||2 ∧ 0 = ||v1 − v2||2)

∨ (0 = ||u1 − v2||2 ∧ 0 = ||v1 − u2||2)

⇔ (u1 = u2 ∧ v1 = v2)

∨ (u1 = v2 ∧ v1 = u2)

Given that we are dealing with these as non-ordered pairs, d(C1, C2) = 0⇔ C1 = C2.

• Symmetry: Stems directly from the fact that we define C1 and C2 as non-ordered

pairs, hence the definition of the distance for each is exactly the same.

• Triangle inequality:The triangle inequality comes as a result of the triangle inequality

of the ell2 norm. We want to show that

d(C1, C3) ≤ d(C1, C2) + d(C2, C3)

d(C1, C3) ≤ ||u1 − u3||2 + ||v1 − v3||2
= ||u1 − u3 + u2 − u2||2 + ||v1 − v3 + v2 − v2||2

≤ ||u1 − u2||2 + ||u2 − u3||2 + ||v1 − v2||2 + ||v2 − v3||2
= ||u1 − u2||2 + ||v1 − v2||2 + ||u2 − u3||2 + ||v2 − v3||2
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Through an analogous process,

d(C1, C3) ≤ ||u1 − u3 + v2 − v2||2 + ||v1 − v3 + u2 − u2||2
≤ ||u1 − v2||2 + ||v1 − u2||2 + ||v2 − u3||2 + ||u2 − v3||2

Additionally, the following is also true:

d(C1, C3) ≤ ||u1 − v3||2 + ||v1 − u3||2

Therefore, through analogous reasoning, we derive the following two sets of inequal-

ities:

d(C1, C3) ≤ ||u1 − v3 + u2 − u2||2 + ||v1 − u3 + v2 − v2||2
≤ ||u1 − u2||2 + ||v1 − v2||2 + ||u2 − v3||2 + ||v2 − u3||2

d(C1, C3) ≤ ||u1 − v3 + v2 − v2||2 + ||v1 − u3 + u2 − u2||2
≤ ||u1 − v2||2 + ||v1 − u2||2 + ||v2 − v3||2 + ||u2 − u3||2

The four inequalities we have derived span the four possible cases for d(C1, C2) +

d(C2, C3), which concludes our proof.

C Principal angles and CAA

Although principal angles might initially seem like a good alternative to measure distances

between CAA canonical spaces, note that this is not a viable option. Even though each pair

of vectors defining a CAA canonical space constitute an orthonormal basis of a subspace,

two orthogonal basis defining the same subspace do not represent the same correlation

structure. This can be derived from the fact that, as shown in Section 4.3, two different

pairs of vectors cannot represent the same correlation structure. It is also easy to under-
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stand why this would not be the case with a simple counterexample in R3. Consider the

following two pairs of vectors:{
u1 = (1, 0, 0)

v1 = (0, 1, 0)

{
u2 = ( 1√

2
, 1√

2
, 0)

v2 = ( 1√
2
,− 1√

2
, 0)

Even though they are both orthonormal bases of the same subspace, u1v
T
1 6= u2v

T
2 .
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