<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div dir="ltr"></div><div dir="ltr">Also note this is in NSH 3305 today</div><div dir="ltr"><br><blockquote type="cite">On Oct 24, 2023, at 10:56 AM, Asher Trockman <ashert@andrew.cmu.edu> wrote:<br><br></blockquote></div><blockquote type="cite"><div dir="ltr"><meta http-equiv="content-type" content="text/html; charset=utf-8"><div dir="ltr"></div><div dir="ltr">Reminder that this is today!</div><div dir="ltr"><br><blockquote type="cite">On Oct 22, 2023, at 4:37 PM, Asher Trockman <ashert@cs.cmu.edu> wrote:<br><br></blockquote></div><blockquote type="cite"><div dir="ltr"><div dir="ltr">Dear all,<div><br></div><div><div>We look forward to seeing you <b>this Tuesday (10/24)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of this semester's <b>CMU AI Seminar</b>, sponsored by <a href="https://sambanova.ai/" target="_blank">SambaNova Systems</a>. The seminar will be held in NSH 3305 <b>with pizza provided </b>and will<b> </b>be streamed on Zoom.</div><div><br></div><div>To learn more about the seminar series or to see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">seminar website</a>.</div><div><br></div><font color="#0b5394"><span style="background-color:rgb(255,255,0)">On this Tuesday (10/24), <u>Tongzhou Wang</u> </span><span style="background-color:rgb(255,255,0)">(MIT) will be giving a talk titled </span><b style="background-color:rgb(255,255,0)">"</b><b style="background-color:rgb(255,255,0)">Quasimetric Reinforcement Learning</b></font><b style="color:rgb(11,83,148);background-color:rgb(255,255,0)">"</b><font color="#0b5394" style="background-color:rgb(255,255,0)">.</font></div><div><font color="#0b5394"><span style="background-color:rgb(255,255,0)"><br></span><b>Title</b>: Quasimetric Reinforcement Learning<br><br></font><div><font color="#0b5394"><b>Talk Abstract</b>: In goal-reaching agents, how are strategies for different goals related? Can we solve goal-reaching reinforcement learning (RL) with a sufficiently good representation of states and goals? In this talk, I will present a method for training high-performance optimal goal-reaching agents by learning a quasimetric geometry. This talk consists of three parts:</font></div><font color="#0b5394">1. Goal-Reaching RL == _Quasimetric_ Geometry Learning. <br>2. How to represent this geometry? Deep quasimetric models. <br>3. How to learn this geometry from local transitions? A geometric argument based on quasimetric properties.</font><div><div><div><font color="#0b5394"> </font><font color="#0b5394"><br></font></div><div><font color="#0b5394"><b>Speaker Bio:</b> <a href="https://www.tongzhouwang.info">Tongzhou</a> is a final year PhD student at MIT, advised by Phillip Isola and Antonio Torralba. His research interests lie in structures in machine learning and artificial agents, focusing on learning structured representations for better perception and decision-making. His work spans representation learning, reinforcement learning, and machine learning. Tongzhou co-organized the Goal-Conditioned Reinforcement Learning workshop at NeurIPS 2023, bridging researchers and practitioners across machine learning and decision-making. Before his PhD study, Tongzhou received his bachelor's degree from UC Berkeley while working with Stuart Russell, Alyosha Efros and Ren Ng, and was an early member of the PyTorch team at Facebook AI Research.</font></div><div><font color="#0b5394"><br></font></div><div><font color="#0b5394"><b>In person: </b>NSH 3305</font></div><div><font color="#0b5394"><b>Zoom Link</b>: <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09" target="_blank">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></font></div></div></div></div><div><br></div><div>Thanks,</div><div>Asher Trockman</div></div>
</div></blockquote></div></blockquote></body></html>