<div dir="ltr">Reminder that this is happening soon.</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Apr 3, 2023 at 9:26 AM Asher Trockman <<a href="mailto:ashert@cs.cmu.edu">ashert@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div><div>We look forward to seeing you<b> </b><b>this Tuesday (4/4)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of this semester's <b>CMU AI Seminar</b>, sponsored by <a href="https://sambanova.ai/" target="_blank">SambaNova Systems</a>. The seminar will be held in GHC 6115 <b>with pizza provided </b>and will<b> </b>be streamed on Zoom.</div><div><br></div><div>To learn more about the seminar series or to see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">seminar website</a>.</div><div><br></div><font color="#0b5394"><span style="background-color:rgb(255,255,0)">This Tuesday (4/4),<span> <u>Rattana Pukdee</u></span></span><b style="background-color:rgb(255,255,0)"> </b><span style="background-color:rgb(255,255,0)">(CMU) will be giving a talk titled </span><b style="background-color:rgb(255,255,0)">"</b><span style="background-color:rgb(255,255,0)"><b>Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games</b></span><b style="background-color:rgb(255,255,0)">".</b></font></div><div><font color="#0b5394"><span style="background-color:rgb(255,255,0)"><br></span><b>Title</b>: Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games<br><br></font><div><font color="#0b5394"><b>Talk Abstract</b>: In this talk, we will look at the problem of learning adversarially robust models from the perspective of a 2-player zero-sum game. We will show that even in a simple scenario of a linear classifier and a statistical model that abstracts robust vs. non-robust features, the alternating best response strategy (which resembles adversarial training) of such a game may not converge. On the other hand, a unique pure Nash equilibrium of the game exists and is provably robust. We support our theoretical results with experiments, showing the non-convergence of adversarial training and the robustness of Nash equilibrium.</font><div><div><font color="#0b5394"><br></font></div><div><font color="#0b5394"><b>Speaker Bio:</b> Rattana Pukdee is a second-year PhD student in the Machine Learning Department at Carnegie Mellon University, working with Nina Balcan and Pradeep Ravikumar. His current research interests are in learning with domain knowledge and reliable machine learning. Previously, he received a Master in Mathematics from the University of Oxford.</font></div><div><br></div><div><font color="#0b5394"><b>In person: </b>GHC 6115</font></div><div><font color="#0b5394"><b>Zoom Link</b>: <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09" target="_blank">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></font></div></div></div></div><div><br></div><div>Thanks,</div><div>Asher Trockman</div></div>
</blockquote></div>