<div dir="ltr">Reminder that this is happening today!</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Mar 26, 2023 at 11:51 AM Asher Trockman <<a href="mailto:ashert@cs.cmu.edu">ashert@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div><div>We look forward to seeing you<b> </b><b>this Tuesday (3/28)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of this semester's <b>CMU AI Seminar</b>, sponsored by <a href="https://sambanova.ai/" target="_blank">SambaNova Systems</a>. The seminar will be held in GHC 6115 <b>with pizza provided </b>and will<b> </b>be streamed on Zoom.</div><div><br></div><div>To learn more about the seminar series or to see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">seminar website</a>.</div><div><br></div><font color="#0b5394"><span style="background-color:rgb(255,255,0)">This Tuesday (3/28), <u>Siddharth Prasad</u></span><b style="background-color:rgb(255,255,0)"> </b><span style="background-color:rgb(255,255,0)">(CMU) will be giving a talk titled </span><b style="background-color:rgb(255,255,0)">"</b><b style="background-color:rgb(255,255,0)">Bicriteria Multidimensional Mechanism Design with Side Information</b><b style="background-color:rgb(255,255,0)">".</b></font></div><div><font color="#0b5394"><span style="background-color:rgb(255,255,0)"><br></span><b>Title</b>: </font>Bicriteria Multidimensional Mechanism Design with Side Information<font color="#0b5394"><br><br></font><div><font color="#0b5394"><b>Talk Abstract</b>: </font>We develop a versatile new methodology for multidimensional mechanism design that incorporates side information about agent types with the<span> </span><span>bicriteria</span><span> </span>goal of generating high social welfare and high revenue simultaneously. Side information can come from a variety of sources---examples include advice from a domain expert, predictions from a machine-learning model trained on historical agent data, or even the mechanism designer's own gut instinct---and in practice such sources are abundant. In this work we adopt a prior-free perspective that makes no assumptions on the correctness, accuracy, or source of the side information. <div><br></div><div>First, we design a meta-mechanism that integrates input side information with an improvement of the classical VCG mechanism. The welfare, revenue, and incentive properties of our meta-mechanism are characterized by a number of novel constructions we introduce based on the notion of a <i>weakest competitor,</i> which is an agent that has the smallest impact on welfare. We then show that our meta-mechanism---when carefully instantiated---simultaneously achieves strong welfare and revenue guarantees that are parameterized by errors in the side information. When the side information is highly informative and accurate, our mechanism achieves welfare and revenue competitive with the total social surplus, and its performance decays continuously and gradually as the quality of the side information decreases. </div><div><br></div><div>Finally, we apply our meta-mechanism to a setting where each agent's type is determined by a constant number of parameters. Specifically, agent types lie on constant-dimensional subspaces (of the potentially high-dimensional ambient type space) that are known to the mechanism designer. We use our meta-mechanism to obtain the first known welfare and revenue guarantees in this setting.</div><div><div><font color="#0b5394"><br></font></div><div><font color="#0b5394"><b>Speaker Bio:</b> </font><a href="https://www.cs.cmu.edu/~sprasad2/" target="_blank">Siddharth Prasad</a> is a fourth-year PhD student in the Computer Science Department at Carnegie Mellon University advised by Nina Balcan and Tuomas Sandholm. His research interests span machine learning, integer programming, mechanism design, algorithms, and their various interactions. <br></div>He was a student researcher at Google Research during Summer 2022, hosted by Craig Boutilier and Martin Mladenov. He received a B.S. in math and computer science from Caltech in 2019.<div><br></div><div><font color="#0b5394"><b>In person: </b>GHC 6115</font></div><div><font color="#0b5394"><b>Zoom Link</b>: <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09" target="_blank">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></font></div></div></div></div><div><br></div><div>Thanks,</div><div>Asher Trockman</div></div>
</blockquote></div>