<div dir="ltr">Reminder that this is happening now.</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Nov 20, 2022 at 1:44 PM Asher Trockman <<a href="mailto:ashert@cs.cmu.edu">ashert@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div><div>We look forward to seeing you <b>this coming Tuesday (11/22)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of this semester's <b>CMU AI Seminar</b>, sponsored by <a href="https://sambanova.ai/" target="_blank">SambaNova Systems</a>. The seminar will be held in NSH 3305 <b>with pizza provided </b>and will<b> </b>be streamed on Zoom.</div><div><br></div><div>To learn more about the seminar series or to see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">seminar website</a>.</div><div><br></div><font color="#0b5394"><span style="background-color:rgb(255,255,0)">On 11/22, </span></font><span style="background-color:rgb(255,255,0)"><font color="#0b5394"><b><u>Aldo Pacchiano</u></b></font></span><font color="#0b5394"><b style="background-color:rgb(255,255,0)"> </b><span style="background-color:rgb(255,255,0)">(Microsoft Research) will be giving a talk titled </span><b style="background-color:rgb(255,255,0)">"</b></font><b style="background-color:rgb(255,255,0)"><font color="#0b5394">Online Model Selection: the principle of regret balancing</font></b><font color="#0b5394"><b style="background-color:rgb(255,255,0)">".</b></font></div><div><font color="#0b5394"><span style="background-color:rgb(255,255,0)"><br></span><b>Title</b>: Online Model Selection: the principle of regret balancing</font><div><font color="#0b5394"><br></font><div><font color="#0b5394"><b>Talk Abstract</b>: We will introduce the problem of online model selection where a learner is to select among a set of online algorithms to solve a specific problem instance. We would like to design algorithms that allow such a learner to select in an online fashion the best algorithm without incurring much regret. This problem is challenging because in contrast with for example multi armed bandits, the algorithms' rewards -due to the algorithm's own learning process- may be non-stationary. We will introduce the principle of regret balancing, a simple, practical and effective model selection algorithmic design technique that allows for online selection of the best among multiple (base) algorithms in a fully blackbox fashion. Regret balancing solves the problem of non-stationarity by introducing an elegant `misspecification test' that can efficiently detect when a base algorithm is not appropriate for the problem at hand. Regret balancing techniques have also been used to provide clarity to some long-standing problems in online learning such as corruption learning in MDPs.</font></div><div><div><font color="#0b5394"><br><b>Speaker Bio</b>: Aldo Pacchiano is a postdoctoral researcher at Microsoft Research NYC. He obtained his PhD at UC Berkeley where he was advised by Prof. Peter Bartlett and Prof. Michael Jordan. His research lies in the areas of Reinforcement Learning, Online Learning, Bandits and Algorithmic Fairness. He is particularly interested in furthering our statistical understanding of learning phenomena in adaptive environments and use these theoretical insights and techniques to design useful algorithms in (among other things) bandits, RL, and experimental design.</font><div><br></div><div><b>In person: </b>NSH 3305</div><div><b>Zoom Link</b>: <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09" target="_blank">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></div></div></div></div></div><div><br></div><div>Thanks,</div><div>Asher Trockman</div></div>
</blockquote></div>