<div dir="ltr">Just a reminder that this is happening today.</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Nov 11, 2022 at 4:59 PM Asher Trockman <<a href="mailto:ashert@cs.cmu.edu">ashert@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div><div>We look forward to seeing you <b>this coming Tuesday (11/15)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of this semester's <b>CMU AI Seminar</b>, sponsored by <a href="https://sambanova.ai/" target="_blank">SambaNova Systems</a>. The seminar will be held in NSH 3305 <b>with pizza provided </b>and will<b> </b>be streamed on Zoom.</div><div><br></div><div>To learn more about the seminar series or to see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">seminar website</a>.</div><div><br></div><font color="#0b5394"><span style="background-color:rgb(255,255,0)">On 11/15, </span></font><span style="background-color:rgb(255,255,0)"><font color="#0b5394"><b><u>Alexander Terenin</u></b></font></span><font color="#0b5394"><b style="background-color:rgb(255,255,0)"> </b><span style="background-color:rgb(255,255,0)">(University of Cambridge) will be giving a talk titled </span><b style="background-color:rgb(255,255,0)">"</b></font><span style="background-color:rgb(255,255,0)"><font color="#0b5394"><b>Pathwise Conditioning and Non-Euclidean Gaussian Processes</b></font></span><font color="#0b5394"><b style="background-color:rgb(255,255,0)">".</b></font></div><div><font color="#0b5394"><span style="background-color:rgb(255,255,0)"><br></span><b>Title</b>: Pathwise Conditioning and Non-Euclidean Gaussian Processes</font><div><font color="#0b5394"><br></font><div><font color="#0b5394"><b>Talk Abstract</b>: In Gaussian processes, conditioning and computation of posterior distributions is usually done in a distributional fashion by working with finite-dimensional marginals. However, there is another way to think about conditioning: using actual random functions rather than their probability distributions. This perspective is particularly helpful in decision-theoretic settings such as Bayesian optimization, where it enables efficient computation of a wider class of acquisition functions than otherwise possible. In this talk, we describe these recent advances, and discuss their broader implications to Gaussian processes. We then present a class of Gaussian process models on graphs and manifolds, which can enable one to perform Bayesian optimization while taking into account symmetries and constraints in an intrinsic manner.</font></div><div><div><font color="#0b5394"><br><b>Speaker Bio</b>: Alexander Terenin is a Postdoctoral Research Associate at the University of Cambridge. He is interested in statistical machine learning, particularly in settings where the data is not fixed, but is gathered interactively by the learning machine. This leads naturally to Gaussian processes and data-efficient interactive decision-making systems such as Bayesian optimization, to areas such as multi-armed bandits and reinforcement learning, and to techniques for incorporating inductive biases and prior information such as symmetries into machine learning models.</font><div><br></div><div><b>In person: </b>NSH 3305</div><div><b>Zoom Link</b>: <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09" target="_blank">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></div></div></div></div></div><div><br></div><div>Thanks,</div><div>Asher Trockman</div></div>
</blockquote></div>