<div dir="ltr">Hi all,<div><br></div><div>Reminder that this is happening today at noon in NSH 3305 (and on Zoom). There will be pizza. Hope to see you there!</div><div><br></div><div>Thanks,</div><div>Asher</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Sep 11, 2022 at 4:08 PM Asher Trockman <<a href="mailto:ashert@cs.cmu.edu">ashert@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div><div>We look forward to seeing you <b>this Tuesday (9/13)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the first talk of this semester's <b>CMU <span>AI</span><span> S</span><span>eminar</span></b>, sponsored by <a href="https://sambanova.ai/" target="_blank">SambaNova Systems</a>. The seminar will be held in person in NSH 3305 with food provided, and it will also be available on Zoom.</div><div><br></div><div>To learn more about the <span>seminar</span> series or to see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank"><span>seminar</span> website</a>.</div><div><br></div><font color="#0b5394"><span style="background-color:rgb(255,255,0)">On 9/13,<span> </span></span><b style="background-color:rgb(255,255,0)"><u>Zico Kolter</u> </b><span style="background-color:rgb(255,255,0)">(CMU) will be giving a talk titled<span> </span></span><b style="background-color:rgb(255,255,0)">"New approaches to detecting and adapting to domain shifts in machine learning</b></font><font color="#0b5394"><b style="background-color:rgb(255,255,0)">" </b><span style="background-color:rgb(255,255,0)">to share work on evaluating and adapting machine learning models under distribution shift.</span></font></div><div><font color="#0b5394"><span style="background-color:rgb(255,255,0)"><br></span><b>Title</b>: New approaches to detecting and adapting to domain shifts in machine learning</font><div><font color="#0b5394"><br></font><div><font color="#0b5394"><b>Talk Abstract</b>: Machine learning systems, in virtually every deployed system, encounter data from a qualitatively different distribution than what they were trained upon. Effectively dealing with this problem, known as domain shift, is thus perhaps the key challenge in deploying machine learning methods in practice. In this talk, I will motivate some of these challenges in domain shift, and highlight some of our recent work on two topics. First, I will present our work on determining if we can even just evaluate the performance of machine learning models under distribution shift, without access to labelled data. And second, I will present work on how we can better adapt our classifiers to new data distributions, again assuming access only to unlabelled data in the new domain.</font><div><font color="#0b5394"><br><b>Speaker Bio</b>: <a href="http://zicokolter.com" target="_blank">Zico Kolter</a> is an Associate Professor in the Computer Science Department at Carnegie Mellon University, and also serves as chief scientist of AI research for the Bosch Center for Artificial Intelligence. His work spans the intersection of machine learning and optimization, with a large focus on developing more robust and rigorous methods in deep learning. In addition, he has worked in a number of application areas, highlighted by work on sustainability and smart energy systems. He is a recipient of the DARPA Young Faculty Award, a Sloan Fellowship, and best paper awards at NeurIPS, ICML (honorable mention), IJCAI, KDD, and PESGM.</font><div><br></div><div><b>In person: </b>NSH 3305</div><div><b>Zoom Link</b>:  <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09" target="_blank">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></div></div></div></div></div><div><br></div><div>Thanks,</div><div>Asher Trockman</div></div>
</blockquote></div>