<div dir="ltr">Hi all,<div><br></div><div>Just a reminder that Albert will be giving his talk on "Efficiently Modeling Long Sequences with Structured State Spaces" in 10 minutes. Zoom: <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></div><div><br></div><div>Thanks,</div><div>Asher</div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, May 9, 2022 at 11:31 AM Asher Trockman <<a href="mailto:ashert@cs.cmu.edu">ashert@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div><div>We look forward to seeing you<span> </span><b><u><span>tomorrow</span></u>, this Tuesday (5/10)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of our <b>CMU <span>AI</span><span> </span><span>seminar</span></b>, sponsored by <a href="https://www.morganstanley.com/about-us/technology/" target="_blank">Morgan Stanley</a>.</div><div><br></div><div>To learn more about the <span>seminar</span> series or see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank"><span>seminar</span> website</a>.</div><div><br></div><font color="#0b5394"><span style="background-color:rgb(255,255,0)"><i><span>Tomorrow</span></i><span> </span>(5/10), </span><b style="background-color:rgb(255,255,0)"><u>Albert Gu</u> </b><span style="background-color:rgb(255,255,0)">(Stanford) will be giving a talk titled </span><b style="background-color:rgb(255,255,0)">"</b></font><b><font color="#0b5394" style="background-color:rgb(255,255,0)">Efficiently Modeling Long Sequences with Structured State Spaces</font></b><font color="#0b5394"><b style="background-color:rgb(255,255,0)">" </b><span style="background-color:rgb(255,255,0)">to</span></font><span style="color:rgb(11,83,148);background-color:rgb(255,255,0)"> share his work proposing the S4 model, which handles long-range dependencies mathematically and empirically, and can be computed very efficiently. </span><br><br><font color="#0b5394"><b>Title</b>: Efficiently Modeling Long Sequences with Structured State Spaces</font><div><font color="#0b5394"><br></font><div><font color="#0b5394"><b>Talk Abstract</b>: A central goal of sequence modeling is designing a single principled model that can address sequence data across a range of modalities and tasks, particularly on long-range dependencies. Although conventional models including RNNs, CNNs, and Transformers have specialized variants for capturing long dependencies, they still struggle to scale to very long sequences of 10000 or more steps. This talk introduces the Structured State Space sequence model (S4), a simple new model based on the fundamental state space representation $x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)$. S4 combines elegant properties of state space models with the recent HiPPO theory of continuous-time memorization, resulting in a class of structured models that handles long-range dependencies mathematically and can be computed very efficiently. S4 achieves strong empirical results across a diverse range of established benchmarks, particularly for continuous signal data such as images, audio, and time series.</font><div><font color="#0b5394"><br><b>Speaker Bio</b>: Albert Gu is a final year Ph.D. candidate in the Department of Computer Science at Stanford University, advised by Christopher Ré. His research broadly studies structured representations for advancing the capabilities of machine learning and deep learning models, with focuses on structured linear algebra, non-Euclidean representations, and theory of sequence models. Previously, he completed a B.S. in Mathematics and Computer Science at Carnegie Mellon University.</font><div><br></div><div><b>Zoom Link</b>: <a href="https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09" target="_blank">https://cmu.zoom.us/j/99510233317?pwd=ZGx4aExNZ1FNaGY4SHI3Qlh0YjNWUT09</a></div></div></div></div></div><div><br></div><div>Thanks,</div><div>Asher Trockman</div></div>
</blockquote></div>