<div dir="ltr">Hi all,<div><br></div><div>Just a <span class="gmail-il">reminder</span> that the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">CMU AI <span class="gmail-il">Seminar</span></a> is tomorrow <b><font color="#ff0000">12pm-1pm</font></b>: <a href="https://cmu.zoom.us/j/99599979949?pwd=YXdzek1ic1FTbkZ6RytaN09Vajdodz09" target="_blank" style="color:rgb(26,115,232);font-family:Roboto,Helvetica,Arial,sans-serif;font-size:14px;white-space:pre-wrap">https://cmu.zoom.us/j/99599979949?pwd=YXdzek1ic1FTbkZ6RytaN09Vajdodz09</a>.</div><div><br></div><div><b>Professor Moritz Hardt (UC Berkeley) </b>will be giving a talk on the fairness in ML and a new dataset they recently worked on.</div><div><br></div><div>(See (updated) talk abstract below)</div><div><br></div><div>Thanks,</div><div>Shaojie</div><div><br></div><div>-----------------------------------------</div><div><b style="color:rgb(11,83,148)">Talk Abstract:</b><span style="color:rgb(11,83,148)"> Although the fairness community has recognized the importance of data, researchers in the area primarily rely on UCI Adult when it comes to tabular data. Derived from a 1994 US Census survey, this dataset has appeared in hundreds of research papers where it served as the basis for the development and comparison of many algorithmic fairness interventions. We reconstruct a superset of the UCI Adult data from available US Census sources and reveal idiosyncrasies of the UCI Adult dataset that limit its external validity. Our primary contribution is a suite of new datasets derived from US Census surveys that extend the existing data ecosystem for research on fair machine learning. We create prediction tasks relating to income, employment, health, transportation, and housing. The data span multiple years and all states of the United States, allowing researchers to study temporal shift and geographic variation. We highlight a broad initial sweep of new empirical insights relating to trade-offs between fairness criteria, performance of algorithmic interventions, and the role of distribution shift based on our new datasets. Our findings inform ongoing debates, challenge some existing narratives, and point to future research directions. Our datasets are available at </span><a href="http://folktables.org/" target="_blank">folktables.org</a>. <font color="#0b5394">Joint work with Frances Ding, John Miller, and Ludwig Schmidt.</font></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Nov 12, 2021 at 11:29 AM Shaojie Bai <<a href="mailto:shaojieb@cs.cmu.edu">shaojieb@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Dear all,<br><br>We look forward to seeing you <b>next Tuesday (11/16)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of our <b><span>CMU</span> <span>AI</span> <span>Seminar</span></b>, sponsored by <a href="https://www.morganstanley.com/about-us/technology/" target="_blank">Morgan Stanley</a>.<br><br>To learn more about the <span>seminar</span> series or see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank"><span>seminar</span> website</a>.<br><br><font color="#0b5394" style="background-color:rgb(255,255,0)">On 11/16, <b><u>Moritz Hardt</u></b> (UC Berkeley) will be giving a talk on "<b>Retiring Adult: New Datasets for Fair Machine Learning</b></font><font color="#0b5394" style="background-color:rgb(255,255,0)">" and his latest research on fair machine learning.</font></div><div><br><font color="#0b5394"><b>Title:</b> Retiring Adult: New Datasets for Fair Machine Learning<br><br><b>Talk Abstract:</b> Although the fairness community has recognized the importance of data, researchers in the area primarily rely on UCI Adult when it comes to tabular data. Derived from a 1994 US Census survey, this dataset has appeared in hundreds of research papers where it served as the basis for the development and comparison of many algorithmic fairness interventions. We reconstruct a superset of the UCI Adult data from available US Census sources and reveal idiosyncrasies of the UCI Adult dataset that limit its external validity. Our primary contribution is a suite of new datasets derived from US Census surveys that extend the existing data ecosystem for research on fair machine learning. We create prediction tasks relating to income, employment, health, transportation, and housing. The data span multiple years and all states of the United States, allowing researchers to study temporal shift and geographic variation. We highlight a broad initial sweep of new empirical insights relating to trade-offs between fairness criteria, performance of algorithmic interventions, and the role of distribution shift based on our new datasets. Our findings inform ongoing debates, challenge some existing narratives, and point to future research directions. Our datasets are available at <a href="http://folktables.org" target="_blank">folktables.org</a>.</font></div><div><font color="#0b5394"><br><b>Speaker Bio: </b>Moritz Hardt is an Assistant Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. His work builds foundations of machine learning and algorithmic decision making with a focus on social context, interaction, and impact. Hardt obtained a PhD in Computer Science from Princeton University with a dissertation on privacy-preserving data analysis and fairness in classification. He then held research positions at IBM Research and Google. Hardt co-founded the Workshop on Fairness, Accountability, and Transparency in Machine Learning. He is a co-author of "Fairness and Machine Learning: Limitations and Opportunities" and "Patterns, Predictions, and Actions: A Story about Machine Learning". He has received an NSF CAREER award, a Sloan fellowship, and best paper awards at ICML 2018 and ICLR 2017.</font><br><br><b>Zoom Link: </b><a href="https://cmu.zoom.us/j/99599979949?pwd=YXdzek1ic1FTbkZ6RytaN09Vajdodz09" style="color:rgb(26,115,232);font-family:Roboto,Helvetica,Arial,sans-serif;font-size:14px;white-space:pre-wrap" target="_blank">https://cmu.zoom.us/j/99599979949?pwd=YXdzek1ic1FTbkZ6RytaN09Vajdodz09</a></div><div><br></div><div>Best,</div><div>Shaojie Bai (MLD)</div></div>
</blockquote></div>