<div dir="ltr">Dear all,<div><br></div><div>Just a reminder that the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">CMU AI Seminar</a> is tomorrow <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2pm-1pm</b></font>: <a href="https://cmu.zoom.us/j/92752459790?pwd=aWN0NXhxaitPTHlnaEZpYUFuNUk1UT09" target="_blank">https://cmu.zoom.us/j/92752459790?pwd=aWN0NXhxaitPTHlnaEZpYUFuNUk1UT09</a>. </div><div><br></div><div>Bo Li (UIUC) (see details below) will be talking about adversarial attacks and security problems in modern machine learning.<br></div><div><br></div><div>Thanks,</div><div>Shaojie</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Apr 20, 2021 at 1:15 PM Shaojie Bai <<a href="mailto:shaojieb@andrew.cmu.edu">shaojieb@andrew.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Dear all,</div><div><br></div><div>We look forward to seeing you <b>next Tuesday (4/27)</b> from <b><font color="#ff0000">1</font></b><font color="#ff0000"><b>2:00-1:00 PM (U.S. Eastern time)</b></font> for the next talk of our <b>CMU AI seminar</b>, sponsored by <a href="https://careers.fortive.com/" target="_blank">Fortive</a>.</div><div><br></div><div>To learn more about the seminar series or see the future schedule, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">seminar website</a>.<a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank"></a></div><div><br></div><font color="#0b5394" style="background-color:rgb(255,255,0)">On 4/27, <b><u>Bo Li</u></b> (UIUC) will be giving a talk on "</font><b style="background-color:rgb(255,255,0)"><font color="#0b5394">Secure Learning in Adversarial Environments</font></b><font color="#0b5394" style="background-color:rgb(255,255,0)">".</font><br><br><font color="#0b5394"><b>Title</b>: Secure Learning in Adversarial Environments</font><div><font color="#0b5394"><br><b>Talk Abstract</b>: Advances in machine learning have led to rapid and widespread deployment of learning based inference and decision making for safety-critical applications, such as autonomous driving and security diagnostics. Current machine learning systems, however, assume that training and test data follow the same, or similar, distributions, and do not consider active adversaries manipulating either distribution. Recent work has demonstrated that motivated adversaries can circumvent anomaly detection or other machine learning models at test time through evasion attacks, or can inject well-crafted malicious instances into training data to induce errors in inference time through poisoning attacks. In this talk, I will describe my recent research about security and privacy problems in machine learning systems. In particular, I will introduce several adversarial attacks in different domains, and discuss potential defensive approaches and principles, including game theoretic based and knowledge enabled robust learning paradigms, towards developing practical robust learning systems with robustness guarantees.</font><div><br><b style="color:rgb(11,83,148)">Speaker Bio</b><font color="#0b5394">: Dr. Bo Li is an assistant professor in the department of Computer Science at University of Illinois at Urbana-Champaign, and the recipient of the Symantec Research Labs Fellowship, Rising Stars, MIT Technology Review TR-35 award, Intel Rising Star award, Amazon Research Award, and best paper awards in several machine learning and security conferences. Previously she was a postdoctoral researcher in UC Berkeley. Her research focuses on both theoretical and practical aspects of security, machine learning, privacy, game theory, and adversarial machine learning. She has designed several robust learning algorithms, scalable frameworks for achieving robustness for a range of learning methods, and a privacy preserving data publishing system. Her work have been featured by major publications and media outlets such as Nature, Wired, Fortune, and New York Times.</font><div><br></div><div><b>Zoom Link</b>: <a href="https://cmu.zoom.us/j/92752459790?pwd=aWN0NXhxaitPTHlnaEZpYUFuNUk1UT09" target="_blank">https://cmu.zoom.us/j/92752459790?pwd=aWN0NXhxaitPTHlnaEZpYUFuNUk1UT09</a><br><br>Thanks,<br>Shaojie Bai (MLD)</div></div></div></div>
</blockquote></div>