<div dir="ltr"><div dir="ltr">Reminder.. this is tomorrow at noon.<div><br></div><div><span style="color:rgb(0,0,0);font-family:arial,sans-serif">Zoom Link: </span><u style="color:rgb(0,0,0);font-family:arial,sans-serif"><a href="https://cmu.zoom.us/j/262225154" target="_blank">https://cmu.zoom.us/j/262225154</a></u><br></div></div><div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Apr 16, 2020 at 7:55 AM Aayush Bansal <<a href="mailto:aayushb@cs.cmu.edu">aayushb@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><font face="arial, sans-serif"><font color="#000000">Animesh Garg (University of Toronto) will be giving an online seminar on "</font>Generalizable Autonomy in Robotics<font color="#000000">" from <u>12:00 - 01:00 PM</u> on April 21.</font></font><div><font color="#000000" face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif" color="#000000">Zoom Link: <u><a href="https://cmu.zoom.us/j/262225154" target="_blank">https://cmu.zoom.us/j/262225154</a></u></font></div><div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><div><font face="arial, sans-serif" color="#000000">CMU AI Seminar is sponsored by Fortive. <br></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000">Following are the details of the talk:</font></div></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><div><font face="arial, sans-serif"><font color="#000000"><b>Title: </b></font>Generalizable Autonomy in Robotics</font></div><div><font face="arial, sans-serif"><br></font></div><div><font face="arial, sans-serif"><font color="#000000"><b>Abstract: </b></font><span style="color:rgb(0,0,0)">Data-driven methods in Robotics circumvent hand-tuned feature engineering, albeit lack guarantees and often incur a massive computational expense. My research aims to bridge this gap and enable generalizable imitation for robot autonomy. We need to build systems that can capture semantic task structures that promote sample efficiency and can generalize to new task instances across visual, dynamical or semantic variations. And this involves designing algorithms that unify learning with perception, control, and planning. In this talk, I will show how inductive biases and priors help with Generalizable Autonomy. First I will talk about the choice of action representations in RL and imitation from ensembles of suboptimal supervisors. Then I will talk about latent variable models in self-supervised learning. Finally, I will talk about meta-learning for multi-task learning and data gathering in robotics.</span></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif"><font color="#000000"><b>Bio</b>: </font><span style="color:rgb(0,0,0)">Animesh Garg is a CIFAR AI Chair Assistant Professor at the University of Toronto and Vector Institute. He is also a Senior Research Scientist at Nvidia. His research interests focus on the intersection of Learning and Perception in Robot Manipulation. He works on efficient generalization in large scale imitation learning. Animesh works on the applications of robot manipulation in surgery and manufacturing as well as personal robotics. Previously, Animesh received his Ph.D. from the University of California, Berkeley and a postdoc at Stanford AI Labs. His work has won multiple best paper awards and nominations including ICRA 2019, ICRA 2015 and IROS 2019, among others and has also featured in press outlets such as New York Times, BBC, and Wired.</span></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font color="#000000" face="arial, sans-serif"><u>Animesh is available for one-on-one (virtual) meetings on April 21. Please send me an email if you would like to schedule a meeting with him.</u><br></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000">To learn more about the seminar series, please visit the website: </font><a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">http://www.cs.cmu.edu/~aiseminar/</a></div></div></div><div><br></div>-- <br><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div style="margin:0px;padding:0px 0px 20px;width:864px;font-family:Roboto,RobotoDraft,Helvetica,Arial,sans-serif"><div><div style="margin:8px 0px 0px;padding:0px"><div><div dir="ltr"><div><font color="#444444">Aayush Bansal</font><br></div><div><a href="http://www.cs.cmu.edu/~aayushb/" target="_blank">http://www.cs.cmu.edu/~aayushb/</a></div><div style="font-size:medium"><br></div></div><div style="font-size:medium"></div><div style="font-size:medium"></div></div></div><div style="font-size:medium"></div></div></div></div></div></div></div></div></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div style="margin:0px;padding:0px 0px 20px;width:864px;font-family:Roboto,RobotoDraft,Helvetica,Arial,sans-serif"><div><div style="margin:8px 0px 0px;padding:0px"><div><div dir="ltr"><div><font color="#444444">Aayush Bansal</font><br></div><div><a href="http://www.cs.cmu.edu/~aayushb/" target="_blank">http://www.cs.cmu.edu/~aayushb/</a></div><div style="font-size:medium"><br></div></div><div style="font-size:medium"></div><div style="font-size:medium"></div></div></div><div style="font-size:medium"></div></div></div></div></div></div></div></div></div></div>