<div dir="ltr"><div dir="ltr">reminder.. this is tomorrow noon.</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Mar 31, 2020 at 1:28 PM Aayush Bansal <<a href="mailto:aayushb@cs.cmu.edu">aayushb@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><font face="arial, sans-serif" color="#000000">Cynthia Rudin (Duke University) will be giving an online seminar on "Do Simpler Models Exist and How Can We Find Them?" from <u>12:00 - 01:00 PM</u> on April 07.</font><div><font color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000">Zoom Link: <u><a href="https://cmu.zoom.us/j/262225154" target="_blank">https://cmu.zoom.us/j/262225154</a></u></font></div><div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><div><font face="arial, sans-serif" color="#000000">CMU AI Seminar is sponsored by Fortive. <br></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000">Following are the details of the talk:</font></div></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><div><font face="arial, sans-serif" color="#000000"><b>Title: </b>Do Simpler Models Exist and How Can We Find Them?</font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000"><b>Abstract: </b>While the trend in machine learning has tended towards more complex hypothesis spaces, it is not clear that this extra complexity is always necessary or helpful for many domains. In particular, models and their predictions are often made easier to understand by adding interpretability constraints. These constraints shrink the hypothesis space; that is, they make the model simpler. Statistical learning theory suggests that generalization may be improved as a result as well. However, adding extra constraints can make optimization (exponentially) harder. For instance, it is much easier in practice to create an accurate neural network than an accurate and sparse decision tree. We address the following question: Can we show that a simple-but-accurate machine learning model might exist for our problem, before actually finding it? If the answer is promising, it would then be worthwhile to solve the harder constrained optimization problem to find such a model. In this talk, I present an easy calculation to check for the possibility of a simpler model. This calculation indicates that simpler-but-accurate models do exist in practice more often than you might think. Time-permitting, I will then briefly overview our progress towards the challenging problem of finding optimal sparse decision trees.</font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000"><b>Bio</b>: Cynthia Rudin is a professor of computer science, electrical and computer engineering, and statistical science at Duke University. Previously, Prof. Rudin held positions at MIT, Columbia, and NYU. Her degrees are from the University at Buffalo and Princeton University. She is a three-time winner of the INFORMS Innovative Applications in Analytics Award, was named as one of the "Top 40 Under 40" by Poets and Quants in 2015, and was named by Businessinsider.com as one of the 12 most impressive professors at MIT in 2015. She has served on committees for INFORMS, the National Academies, the American Statistical Association, DARPA, the NIJ, and AAAI. She is a fellow of both the American Statistical Association and Institute of Mathematical Statistics. She is a Thomas Langford Lecturer at Duke University for 2019-2020.</font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font color="#000000"><u style="background-color:rgb(255,255,255)">Cynthia is available for one-on-one (virtual) meetings on April 07. Please send an email to me if you would like to schedule a meeting with her.</u><font face="arial, sans-serif"><br></font></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000"><br></font></div><div><font face="arial, sans-serif" color="#000000">To learn more about the seminar series, please visit the website. </font></div></div></div><div><font face="arial, sans-serif"><br></font></div>-- <br><div dir="ltr"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div style="margin:0px;padding:0px 0px 20px;width:864px;font-family:Roboto,RobotoDraft,Helvetica,Arial,sans-serif"><div><div style="margin:8px 0px 0px;padding:0px"><div><div dir="ltr"><div><font color="#444444">Aayush Bansal</font><br></div><div><a href="http://www.cs.cmu.edu/~aayushb/" target="_blank">http://www.cs.cmu.edu/~aayushb/</a></div><div style="font-size:medium"><br></div></div><div style="font-size:medium"></div><div style="font-size:medium"></div></div></div><div style="font-size:medium"></div></div></div></div></div></div></div></div></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div style="margin:0px;padding:0px 0px 20px;width:864px;font-family:Roboto,RobotoDraft,Helvetica,Arial,sans-serif"><div><div style="margin:8px 0px 0px;padding:0px"><div><div dir="ltr"><div><font color="#444444">Aayush Bansal</font><br></div><div><a href="http://www.cs.cmu.edu/~aayushb/" target="_blank">http://www.cs.cmu.edu/~aayushb/</a></div><div style="font-size:medium"><br></div></div><div style="font-size:medium"></div><div style="font-size:medium"></div></div></div><div style="font-size:medium"></div></div></div></div></div></div></div></div></div></div>