<div dir="ltr"><div class="gmail_default" style="color:#0b5394">FYI. ICML AI + Climate Change Workshop CFP: <a href="https://www.climatechange.ai/">https://www.climatechange.ai/</a></div><div class="gmail_default" style="color:#0b5394"><br></div><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>发件人: <strong class="gmail_sendername" dir="auto">Priya Donti</strong> <span dir="ltr"><<a href="mailto:pdonti@andrew.cmu.edu">pdonti@andrew.cmu.edu</a>></span><br>Date: 2019年4月2日周二 下午2:00<br>Subject: Forwarding ICML AI + Climate Change Workshop call for submissions?<br>To: Han Zhao <<a href="mailto:han.zhao@cs.cmu.edu">han.zhao@cs.cmu.edu</a>>, Zico Kolter (CMU) <<a href="mailto:zkolter@cs.cmu.edu">zkolter@cs.cmu.edu</a>><br></div><br><br><div dir="ltr">Hi Han and Zico,<div><br></div><div>Would you be willing to forward this call for submissions on to the AI seminar mailing list?</div><div><br></div><div>Thanks!</div><div>Priya</div><div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>From: <strong class="gmail_sendername" dir="auto">Priya Donti</strong> <span dir="ltr"><<a href="mailto:pdonti@andrew.cmu.edu" target="_blank">pdonti@andrew.cmu.edu</a>></span><br>Subject: ICML AI + Climate Change Workshop - call for submissions<br></div><br><div dir="ltr"><div><div dir="ltr" class="m_7792748164390228949m_8375977978729544119gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">*** CALL FOR SUBMISSIONS: ICML workshop “Climate Change: How Can AI Help?” ***</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">We invite submission of extended abstracts applying machine learning to the problems of climate change. There will be three tracks (Deployed, Research, and Ideas).</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Date: June 14 or 15, 2019</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Location: Long Beach, California, USA</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Website: <a href="http://www.climatechange.ai" target="_blank">www.climatechange.ai</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Submission deadline: April 30, 11:59 PM Pacific Time</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Notification: May 15 (early notification possible upon request)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Submission website: </span><a href="https://cmt3.research.microsoft.com/CCAI2019" style="text-decoration-line:none" target="_blank"><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;text-decoration-line:underline;vertical-align:baseline;white-space:pre-wrap">https://cmt3.research.microsoft.com/CCAI2019</span><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"><br></span></a><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Contact: <a href="mailto:climatechangeai.icml2019@gmail.com" target="_blank">climatechangeai.icml2019@gmail.com</a></span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Summary</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">-------------</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Climate change is widely agreed to be one of the greatest challenges facing humanity. We already observe increased incidence and severity of storms, droughts, fires, and flooding, as well as significant changes to global ecosystems, including the natural resources and agriculture on which humanity depends. The 2018 UN report on climate change estimates that the world has only thirty years to eliminate greenhouse emissions completely if we are to avoid catastrophic consequences.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Many in the machine learning community want to address climate change but feel their skills are inapplicable. This workshop will showcase the many settings in which machine learning can be applied to reducing greenhouse emissions and helping society adapt to the effects of climate change. Climate change is a complex problem requiring simultaneous action from many directions. While machine learning is not a silver bullet, there is significant potential impact for research and implementation.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">About ICML</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">----------------</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">ICML is one of the premier conferences on machine learning, and includes a wide audience of researchers and practitioners in academia and industry. It is possible to attend the workshop without either presenting or attending the main ICML conference. Those interested should register for the Workshops component of ICML at <a href="https://icml.cc/" target="_blank">https://icml.cc/</a> while tickets last (a number of spots will be reserved for accepted submissions).</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Call for submissions</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">---------------------------</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">We invite submission of extended abstracts on machine learning applied to problems in climate mitigation, adaptation, or modeling, including but not limited to the following topics:</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Power generation and grids</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Transportation</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Smart buildings and cities</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Industrial optimization</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Carbon capture and sequestration</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Agriculture, forestry and other land use</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Climate modeling</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Extreme weather events</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Disaster management and relief</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Societal adaptation</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Ecosystems and natural resources</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Data presentation and management</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">- Climate finance</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Accepted submissions will be invited to give poster presentations at the workshop, of which some will be selected for spotlight talks. Please contact <a href="mailto:climatechangeai.icml2019@gmail.com" target="_blank">climatechangeai.icml2019@gmail.com</a> with questions, or if visa considerations make earlier notification important.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Dual-submissions are allowed, and the workshop does not record proceedings. Submissions will be reviewed double-blind; do your best to anonymize your submission, and do not include identifying information for authors in the PDF. We encourage, but do not require, use of the ICML style template (please do not use the “Accepted” format).</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Submission tracks</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">------------------------</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Extended abstracts are limited to 3 pages for the Deployed and Research tracks, and 2 pages for the Ideas track, in PDF format. An additional page may be used for references. All machine learning techniques are welcome, from kernel methods to deep learning. Each submission should make clear why the application has (or could have) positive impacts regarding climate change. There are three tracks for submissions:</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">DEPLOYED</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-style:italic;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">* Work that is already having an impact *</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Submissions for the Deployed track are intended for machine learning approaches which are impacting climate-relevant problems through consumers or partner institutions. This could include implementations of academic research that have moved beyond the testing phase, as well as results from startups/industry. Details of methodology need not be revealed if they are proprietary, though transparency is encouraged.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">RESEARCH</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-style:italic;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">* Work that will have an impact when deployed *</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Submissions for the Research track are intended for machine learning research applied to climate-relevant problems. Submissions should provide experimental or theoretical validation of the method proposed, as well as specifying what gap the method fills. Algorithms need not be novel from a machine learning perspective if they are applied in a novel setting.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Datasets may be submitted to this track that are designed to permit machine learning research (e.g. formatted with clear benchmarks for evaluation). In this case, baseline experimental results on the dataset are preferred but not required.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">IDEAS</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-style:italic;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">* Future work that could have an impact *</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Submissions for the Ideas track are intended for proposed applications of machine learning to solve climate-relevant problems. While the least constrained, this track will be subject to a very high standard of review. No results need be demonstrated, but ideas should be justified as extensively as possible, including motivation for the problem being solved, an explanation of why current tools are inadequate, and details of how tools from machine learning are proposed to fill the gap.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Organizers</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">---------------</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">David Rolnick (UPenn)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Alexandre Lacoste (ElementAI)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Tegan Maharaj (MILA)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Jennifer Chayes (Microsoft)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Yoshua Bengio (MILA)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap"> </span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Karthik Mukkavilli (MILA)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Di Wu (MILA)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Narmada Balasooriya (ConscientAI)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Priya Donti (CMU)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Lynn Kaack (CMU)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">Manvitha Ponnapati (MIT)</span></p><br class="m_7792748164390228949m_8375977978729544119gmail-Apple-interchange-newline"></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
</div></div></div>
</div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>Han Zhao<br>Machine Learning Department</b></span></div><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>School of Computer Science<br>Carnegie Mellon University<br>Mobile: +1-</b></span><b style="color:rgb(136,136,136);font-size:13px">412-652-4404</b></div></div></div></div></div></div>