<div dir="ltr"><div class="gmail_default" style="color:#0b5394">A gentle reminder that the following talk will happen today noon at GHC 6115.</div><br><div class="gmail_quote"><div dir="ltr">Han Zhao <<a href="mailto:han.zhao@cs.cmu.edu">han.zhao@cs.cmu.edu</a>> 于2018年11月11日周日 下午9:05写道:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div style="color:rgb(34,34,34)">Dear faculty and students:<br><br>We look forward to seeing you next Tuesday, Nov. 13th, at noon in GHC 6115 for <span class="m_6898893216056771951gmail-m_916260871951492389gmail-m_-3184835377203912231gmail-m_-7381204479734663679gmail-il"><span class="m_6898893216056771951gmail-m_916260871951492389gmail-m_-3184835377203912231gmail-il"><span class="m_6898893216056771951gmail-m_916260871951492389gmail-il"><span class="m_6898893216056771951gmail-il">AI</span></span></span></span> <span class="m_6898893216056771951gmail-m_916260871951492389gmail-m_-3184835377203912231gmail-m_-7381204479734663679gmail-il"><span class="m_6898893216056771951gmail-m_916260871951492389gmail-m_-3184835377203912231gmail-il"><span class="m_6898893216056771951gmail-m_916260871951492389gmail-il"><span class="m_6898893216056771951gmail-il">Seminar</span></span></span></span> sponsored by Apple. To learn more about the <span class="m_6898893216056771951gmail-m_916260871951492389gmail-m_-3184835377203912231gmail-m_-7381204479734663679gmail-il"><span class="m_6898893216056771951gmail-m_916260871951492389gmail-m_-3184835377203912231gmail-il"><span class="m_6898893216056771951gmail-m_916260871951492389gmail-il"><span class="m_6898893216056771951gmail-il">seminar</span></span></span></span> series, please visit the website. <br>On Tuesday, Kirstin Early will give the following talk:</div><div style="color:rgb(34,34,34)"><br></div><div><div style="color:rgb(34,34,34)"><b>Title: Towards a general purpose text representation for mail</b></div><br class="m_6898893216056771951gmail-m_916260871951492389gmail-Apple-interchange-newline"><div><b style="color:rgb(34,34,34)">Abstract: </b>There are many possibilities for using machine learning on email to help users save time and accomplish their goals -- e.g., spam classification, reply prediction, and message categorization. However, building a separate model for each task is inefficient because each model generates its own internal representation of messages. A general-purpose representation could eliminate this redundant computation and be used for many downstream tasks. We train encoder-decoder neural networks on self-supervised mail tasks and generate representations of new mail messages as the encoder output of these networks. Simple models for downstream tasks can then be trained on the representations. We illustrate this method on a pilot task of RSVP classification and find the general-purpose representation performs similarly to a model built specifically for this task.</div></div></div></div>-- <br><div dir="ltr" class="m_6898893216056771951gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>Han Zhao<br>Machine Learning Department</b></span></div><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>School of Computer Science<br>Carnegie Mellon University<br>Mobile: +1-</b></span><b style="color:rgb(136,136,136);font-size:13px">412-652-4404</b></div></div></div></div></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>Han Zhao<br>Machine Learning Department</b></span></div><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>School of Computer Science<br>Carnegie Mellon University<br>Mobile: +1-</b></span><b style="color:rgb(136,136,136);font-size:13px">412-652-4404</b></div></div></div></div></div></div>