<div dir="ltr"><div class="gmail_default" style="color:#0b5394">A gentle reminder that the following talk will happen 12pm today at NSH 3305. </div><br><div class="gmail_quote"><div dir="ltr">Han Zhao <<a href="mailto:han.zhao@cs.cmu.edu">han.zhao@cs.cmu.edu</a>> 于2018年10月27日周六 下午11:25写道:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div dir="ltr"><div style="color:rgb(11,83,148)"><div style="color:rgb(34,34,34)">Dear faculty and students:<br><br>We look forward to seeing you next Tuesday, Oct. 30th, at noon in NSH 3305 for <span class="m_-5037238603622627435gmail-m_-7381204479734663679gmail-il"><span class="m_-5037238603622627435gmail-il">AI</span></span> <span class="m_-5037238603622627435gmail-m_-7381204479734663679gmail-il"><span class="m_-5037238603622627435gmail-il">Seminar</span></span> sponsored by Apple. To learn more about the <span class="m_-5037238603622627435gmail-m_-7381204479734663679gmail-il"><span class="m_-5037238603622627435gmail-il">seminar</span></span> series, please visit the website. <br>On Tuesday, Renato Negrinho will give the following talk:</div><div style="color:rgb(34,34,34)"><br></div><div style="color:rgb(34,34,34)"><div><b>Title: </b>Learning Beam Search Policies via Imitation Learning</div><div><b>Abstract: </b>Beam search is widely used for approximate decoding in structured prediction problems. Models often use a beam at test time but ignore its existence at train time, and therefore do not explicitly learn how to use the beam. % The Solution: our meta-algorithm We develop an unifying meta-algorithm for learning beam search policies using imitation learning. In our setting, the beam is part of the model, and not just an artifact of approximate decoding. Our meta-algorithm captures existing learning algorithms and suggests new ones. It also lets us show novel no-regret guarantees for learning beam search policies.</div></div></div>-- <br><div dir="ltr" class="m_-5037238603622627435gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>Han Zhao<br>Machine Learning Department</b></span></div><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>School of Computer Science<br>Carnegie Mellon University<br>Mobile: +1-</b></span><b style="color:rgb(136,136,136);font-size:13px">412-652-4404</b></div></div></div></div></div></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>Han Zhao<br>Machine Learning Department</b></span></div><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>School of Computer Science<br>Carnegie Mellon University<br>Mobile: +1-</b></span><b style="color:rgb(136,136,136);font-size:13px">412-652-4404</b></div></div></div></div></div></div>