<div dir="ltr"><div class="gmail_default" style="color:#0b5394">A gentle reminder that the talk will be tomorrow (Tuesday) noon at <b>GHC 6115</b>. See you then!</div><br><div class="gmail_quote"><div dir="ltr">Han Zhao <<a href="mailto:han.zhao@cs.cmu.edu">han.zhao@cs.cmu.edu</a>> 于2018年9月7日周五 下午2:56写道:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear faculty and students:<br><br>We look forward to seeing you next Tuesday, Sep. 11th, at noon in <b><div style="color:rgb(11,83,148);display:inline"></div>GHC 6115</b> for AI Seminar sponsored by Apple. To learn more about the seminar series, please visit the <a href="http://www.cs.cmu.edu/~aiseminar/" target="_blank">website</a>.<br>On Tuesday, <a href="http://www.cs.cmu.edu/~mbarnes1/" target="_blank">Matt Barnes</a> will give the following talk:<br><br>Title: Learning with Clusters: A cardinal machine learning sin and how to correct for it<br><br>Abstract: As machine learning systems become increasingly complex, clustering has evolved from an exploratory data analysis tool into an integrated component of computer vision, robotics, medical and census data pipelines. Currently, as with many machine learning systems, the output of the clustering algorithm is taken as ground truth at the next pipeline step. We show this false assumption causes subtle and dangerous behavior for even the simplest systems -- sometimes biasing results by upwards of 25%.<br><br>We provide the first empirical and theoretical study of this phenomenon which we term dependency leakage. Further, we introduce fixes in the form of estimators and methods to both quantify and correct for clustering errors' impacts on downstream learners. Our work is agnostic to the downstream learners, and requires few assumptions on the clustering algorithm. Empirical results demonstrate our approach improves these machine learning systems compared to naive approaches, which do not account for clustering errors.<br><br>This talk is based on the following two papers:<br><div style="color:rgb(11,83,148)"><a href="http://auai.org/uai2017/proceedings/papers/87.pdf" target="_blank">http://auai.org/uai2017/proceedings/papers/87.pdf</a></div><div style="color:rgb(11,83,148)"><a href="https://arxiv.org/abs/1807.06713" target="_blank">https://arxiv.org/abs/1807.06713</a></div><div style="color:rgb(11,83,148)"><br></div>-- <br><div dir="ltr" class="m_-9086401706366927898gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>Han Zhao<br>Machine Learning Department</b></span></div><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>School of Computer Science<br>Carnegie Mellon University<br>Mobile: +1-</b></span><b style="color:rgb(136,136,136);font-size:13px">412-652-4404</b></div></div></div></div></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>Han Zhao<br>Machine Learning Department</b></span></div><div><span style="font-size:13px;border-collapse:collapse;color:rgb(136,136,136)"><b>School of Computer Science<br>Carnegie Mellon University<br>Mobile: +1-</b></span><b style="color:rgb(136,136,136);font-size:13px">412-652-4404</b></div></div></div></div></div></div>