<div dir="ltr">A gentle reminder that the talk will be tomorrow (Tuesday) noon in NSH 3305.</div><div class="gmail_extra"><br><div class="gmail_quote">On Sun, Apr 22, 2018 at 10:01 PM, Adams Wei Yu <span dir="ltr"><<a href="mailto:weiyu@cs.cmu.edu" target="_blank">weiyu@cs.cmu.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)">Dear faculty and students,</div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><br></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><span style="font-weight:400">We look forward to seeing you next Tuesday, April 24, at noon in NSH 3305</span><b style="font-weight:400"> </b>for AI Seminar sponsored by Apple. To learn more about the seminar series, please visit the AI Seminar <a href="http://www.cs.cmu.edu/~aiseminar/" style="color:rgb(17,85,204);font-weight:400" target="_blank">webpage</a>.</div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><br></div><div style="text-align:start;text-indent:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px">On Tuesday,<span> </span></span><span style="font-size:12.8px">Hieu Pham will give the following talk: </span></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><br></div><div style="text-align:start;text-indent:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><div><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px">Title: </span><span style="font-size:12.8px">From Neural Combinatorial Optimization to Automatic Machine Learning</span></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px"><span style="font-size:12.8px"><br></span></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px"><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px">Abstract: </div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px"><br></div><div><span style="text-align:start;text-indent:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline;font-size:12.8px"><div style="text-align:start;text-indent:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial"><div style="text-align:start;text-indent:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial"><div>Despite neural networks' impressive performance on many tasks, designing efficient and deploying neural networks stands an arduous challenge. It involves making a lot of discrete decisions, such as which models to use and how to deploy such models. Automatizing these designs thus comes at a great benefit. In this talk, I will show how one can view the task of designing and deploying neural networks as a combinatorial optimization problem. Then, I will discuss an application of deep reinforcement learning (DRL) on a canonical combinatorial optimization task: the Traveling Salesman Problem (TSP), which outperforms many existing heuristics. Finally, I will connect the dots, showing that the same DRL approach on TSP can be applied to automatize the process of designing and deploying neural networks. Time permits, I will discuss the existing challenges and some future directions in this line of work.</div><div><br></div></div></div></span></div></div></div><div></div></div>
</blockquote></div><br></div>