<div dir="ltr">A gentle reminder that the talk will happen tomorrow (Tuesday) noon at NSH 1507.<div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Sat, Mar 31, 2018 at 9:19 AM, Adams Wei Yu <span dir="ltr"><<a href="mailto:weiyu@cs.cmu.edu" target="_blank">weiyu@cs.cmu.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)">Dear faculty and students,</div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><br></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><span style="font-weight:400">We look forward to seeing you next Tuesday, April 03, at noon in </span><b>NSH 1507</b><b style="font-weight:400"> </b>for AI Seminar sponsored by Apple. To learn more about the seminar series, please visit the AI Seminar <a href="http://www.cs.cmu.edu/~aiseminar/" style="font-weight:400;color:rgb(17,85,204)" target="_blank">webpage</a>.</div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><br></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px">On Tuesday,<span> </span></span><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px"> <a href="https://www.cs.cmu.edu/~hzhao1/" target="_blank">Han Zhao</a></span><span style="font-size:12.8px"><span> </span>will give the following talk: </span></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><br></div><div style="text-align:start;text-indent:0px;text-decoration-style:initial;text-decoration-color:initial;background-color:rgb(255,255,255)"><div><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px">Title: </span><span style="font-size:12.8px">Multiple Source Domain Adaptation with Adversarial Learning</span><br></div><div><span style="font-size:12.8px"><br></span></div><div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px">Abstract: </div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-transform:none;white-space:normal;word-spacing:0px"><br></div><div><span style="text-align:start;text-indent:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline;font-size:12.8px"><div style="text-align:start;text-indent:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial"><div><div>While domain adaptation has been actively researched, most theoretical results and algorithms focus on the single-source-single-target adaptation setting. In the first part of the talk, I will discuss new generalization bounds for domain adaptation when there are multiple source domains with labeled instances and one target domain with unlabeled instances. The theory also leads to an efficient learning strategy using adversarial neural networks: I will show how to interpret it as learning feature representations that are invariant to the multiple domain shifts while still being discriminative for the learning task.</div><div><br></div><div>In the second part, I will discuss two models for multisource domain adaptations: the first model optimizes the worst-case bound, while the second model is a smoothed approximation of the first one and optimizes a task-adaptive bound. We also demonstrate the effectiveness of both models by conducting extensive experiments showing superior adaptation performance on three real-world datasets: sentiment analysis, digit classification, and vehicle counting.</div><div><br></div><div>This talk includes joint work with Shanghang Zhang, Guanhang Wu, Joao Costeira, Jose Moura and Geoff Gordon.</div></div><div><br></div><div><br></div></div></span></div></div></div></div>
</blockquote></div><br></div>