<div dir="ltr">A reminder that the talk is today (Tuesday) noon.</div><div class="gmail_extra"><br><div class="gmail_quote">On Sun, Apr 2, 2017 at 2:04 PM, Adams Wei Yu <span dir="ltr"><<a href="mailto:weiyu@cs.cmu.edu" target="_blank">weiyu@cs.cmu.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="font-size:12.8px"><span style="font-size:12.8px">Dear faculty and students,</span><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">We look forward to seeing you Next Tuesday, April 4, at noon in NSH 3305 for <span class="m_-193215808642197909gmail-m_2680394464591057053gmail-m_-3845786611512726372gmail-m_-6999767458661046436gmail-m_-6479828366463820995gmail-m_1701734696480192352gmail-m_2647091708305858519gmail-m_-7609873634547071637gmail-m_2670556149876493410gmail-il">AI</span> <span class="m_-193215808642197909gmail-m_2680394464591057053gmail-m_-3845786611512726372gmail-m_-6999767458661046436gmail-m_-6479828366463820995gmail-m_1701734696480192352gmail-m_2647091708305858519gmail-m_-7609873634547071637gmail-m_2670556149876493410gmail-il">lunch</span>. To learn more about the seminar and <span class="m_-193215808642197909gmail-m_2680394464591057053gmail-m_-3845786611512726372gmail-m_-6999767458661046436gmail-m_-6479828366463820995gmail-m_1701734696480192352gmail-m_2647091708305858519gmail-m_-7609873634547071637gmail-m_2670556149876493410gmail-il">lunch</span>, please visit <span style="font-size:12.8px">the </span><a href="http://www.cs.cmu.edu/~aiseminar/" style="font-size:12.8px" target="_blank"><span class="m_-193215808642197909gmail-m_2680394464591057053gmail-m_-3845786611512726372gmail-m_-6999767458661046436gmail-m_-6479828366463820995gmail-m_1701734696480192352gmail-m_2647091708305858519gmail-m_-7609873634547071637gmail-m_2670556149876493410gmail-il"><span class="m_-193215808642197909gmail-m_2680394464591057053gmail-m_-3845786611512726372gmail-m_-6999767458661046436gmail-m_-6479828366463820995gmail-m_1701734696480192352gmail-m_2647091708305858519gmail-m_-7609873634547071637gmail-il">AI</span></span> <span class="m_-193215808642197909gmail-m_2680394464591057053gmail-m_-3845786611512726372gmail-m_-6999767458661046436gmail-m_-6479828366463820995gmail-m_1701734696480192352gmail-m_2647091708305858519gmail-m_-7609873634547071637gmail-m_2670556149876493410gmail-il"><span class="m_-193215808642197909gmail-m_2680394464591057053gmail-m_-3845786611512726372gmail-m_-6999767458661046436gmail-m_-6479828366463820995gmail-m_1701734696480192352gmail-m_2647091708305858519gmail-m_-7609873634547071637gmail-il">Lunch</span></span> webpage</a><span style="font-size:12.8px">.</span></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">On Tuesday, <a href="https://sfish0101.bitbucket.io/" target="_blank">Hsiao-Yu Tung</a> will give the following talk: </div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Title: <span style="color:rgb(0,0,0);font-family:arial;font-size:12.8px;white-space:pre-wrap">Adversarial Inversion: Self-supervision with Adversarial Priors</span><span style="font-size:12.8px">.</span></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><span style="font-size:12.8px">Abstract</span><span style="font-size:12.8px">: </span><br></div><div style="font-size:12.8px"><span style="font-size:12.8px"><br></span></div><div style="font-size:12.8px"><p dir="ltr" style="font-size:12.8px;line-height:1.2;margin-top:0pt;margin-bottom:0pt"><span style="font-family:arial;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">We as humans form explanations of visual observations in terms of familiar concepts and memories that are used to interpret and complete information of the image pixels. Computer Vision researchers have developed excellent methods that learn a direct mapping from images to desired outputs using human annotations or synthetically generated data. Despite their success, such supervised models very much depend on the amount of annotated data available, a gap we seek to address.</span></p><span style="font-size:12.8px"><br></span><p dir="ltr" style="font-size:12.8px;line-height:1.2;margin-top:0pt;margin-bottom:0pt"><span style="font-family:arial;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">In this talks, we introduce adversarial inversion, a weakly supervised neural network model that combines self-supervision with adversarial constraints. Given visual input, our model first generates a set of desirable intermediate latent variables, which we call “imaginations”, e.g., 3D pose and camera viewpoint, </span><span style="color:rgb(0,0,0);font-family:arial;white-space:pre-wrap;font-size:12.8px">such that these imagination matches what we observe. Adversarial inversion can be trained with or without paired supervision of standard supervised models, as it does not require paired annotations. It can instead exploit a large number of unlabelled images. We empirically show adversarial inversion outperforms previous state-of-the-art supervised models on 3D human pose estimation and 3D scene depth estimation. Further, we show interesting results on biased image editing.</span></p><p dir="ltr" style="font-size:12.8px;line-height:1.2;margin-top:0pt;margin-bottom:0pt"><br></p><p style="font-size:12.8px;line-height:1.2;margin-top:0pt;margin-bottom:0pt">Joint work with Adam Harley, William Seto and <span style="font-size:12.8px">Katerina Fragkiadaki.</span></p></div></div>
</blockquote></div><br></div>