
Chapter 1

Modelling Cognition

Richard P. Cooper and John Fox

Overview: This chapter introduces the basic concepts of cognitive modelling.
The historical context is briefly reviewed and some ways that cognitive modelling
may be used in theory development are described. Pros and cons of the enterprise
are then discussed. This is followed by a detailed description of several major
approaches to modelling (symbolic, connectionist, hybrid, and architectural). The
chapter concludes with some remarks on our own view of the field, and on the role
of COGENT, the modelling environment used throughout the rest of this book.

1.1 What is Cognitive Modelling?
This book is about understanding human cognition — the mental processes in-
volved in thought, reasoning, language, and so on. The basic premise on which it
is founded is that the development of computer models of cognitive processes can
further our understanding of those processes by allowing us to evaluate computa-
tional mechanisms that might underlie behaviour.

A model in any field, whether it be engineering, architecture, molecular bi-
ology, or cognitive science, is a representation of something that may be used
in place of the real thing. Traditionally the representation might be made out of
wax, clay, metal, or wood. Thus an architect may produce a wooden model of a
building in order to demonstrate or evaluate the building’s appearance. Similarly
an engineer may produce models of bridges to evaluate the relative strengths of
competing designs.
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A computer model has the same function as a traditional model, but rather than
being made out of clay or wood, it consists of a representation in some precisely-
specified computer language. Like the traditional wood or clay model, the repre-
sentation abstracts away unimportant features or characteristics of the thing being
modelled, but it retains all that is essential. Thus, a computer model of an aero-
plane wing for use in testing aerodynamics might abstract the colour and weight
of the wing, but would retain the important features of size, shape, and curvature,
for these features are critical to the aerodynamic behaviour of the wing.

A computer model in cognitive science is much the same kind of thing —
it is an abstract representation that may be used in place of the real thing. The
difference in cognitive science is that the thing being modelled is a cognitive pro-
cess. So, cognitive modelling is the development of computer models of cognitive
processes, and the use of such models to simulate or predict human behaviour.

1.2 A Sample Model
It is perhaps useful to begin by considering, for illustration purposes, what a cog-
nitive model might look like. Consider the task confronting a doctor when at-
tempting to make a diagnosis. This is a typical example of the kind of high-level
cognitive process which we are concerned with in this text. The doctor’s task is
roughly as follows: a patient arrives at the doctor’s office complaining of some
symptom (the presenting symptom). The doctor then reviews the patient’s medi-
cal history, takes some measurements, and asks the patient for more information
about his/her symptoms. On the basis of the information collected, the doctor may
ask yet more questions or carry out further tests. Finally, the doctor decides what
he/she thinks is causing the patient’s symptoms, and makes a diagnosis.

A cognitive model of this task might consist of a computer program that could
take as input some representation of the stimulus (e.g., the patient’s medical his-
tory and presenting symptom) and produce as output a representation of the doc-
tor’s response (whether to seek further information by querying another symptom
or performing a test, or whether to make a diagnosis). A simple model might
consist of a series of stages, whereby the medical history and presenting symptom
initially lead the doctor to propose several competing hypotheses (e.g., either the
patient has asthma or bronchitis). A second stage might then involve selecting the
hypothesis corresponding to the disease that is most frequent in people who share
the patient’s medical history (e.g., that the patient has asthma). The symptom pro-
file of this common disease might then be recalled. The next stage may involve
querying the patient about further symptoms associated with the hypothesised dis-
ease, or about the precise nature of the presenting symptom.

In a fully fledged computational model each of the above processes would
form part of the computer program, and the doctor’s expected behaviour could be
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simulated by running or executing the computer program. If the doctor’s actual
behaviour differs from that which was predicted by the model, we know that the
model is inadequate, and we can examine ways of addressing the model’s short-
comings. If the model is accurate, and especially if it is accurate across a range
of situations, then we may have some confidence that we understand the cognitive
processes underlying performance in the diagnosis task.

This sample model is an abstract representation of the hypothesised cognitive
processes of the doctor. The model is a representation of the processes because
elements in the model correspond to elements of the hypothesised processes. It is
abstract because it leaves out much of the detail of the actual cognitive processing
(e.g., the cognitive processing is carried out by neural tissue rather than a computer
chip). It is hoped that this detail is not important to the overall behaviour of the
doctor. Lastly, if the model is accurate it may be used in place of a doctor, to
predict how a doctor’s diagnostic behaviour might change over time for example,
or to evaluate strategies to lessen the chances of mis-diagnosis.

1.3 What Makes a Good Model?
A good model has two critical properties:
1. It is complete, to the extent that the model does not abstract out aspects of
the original that have an important influence on the properties or behaviour
of the original (e.g., a model of fluid flow in a pipe should not ignore friction
between the pipe wall and the fluid); and

2. It is faithful, to the extent that the abstraction process does not introduce
component properties or relationships that are not features of the original
(e.g., a model building made out of children’s clay might suggest that a real
building is malleable).

These properties have their origin in the way a model abstracts from the thing
being modelled. Completeness is about not abstracting details that are important.
Faithfulness is about not introducing confounding details during the abstraction
process.

It is important to realise that neither of the above properties is absolute, in the
sense that a model is always a model for a specific purpose. The colour scheme
of a model aeroplane, for example, is more relevant than the minutiae of its aero-
dynamics if the model is intended to help identify planes from different countries.
On the other hand the reverse is true if the model is intended to allow exploration
of aerodynamic design changes. For a model to be useful for a specific purpose it
must be sufficiently complete and faithful that the model builder can correctly de-
rive or deduce from the model properties of the real object which were previously
unknown (e.g., whether a building will be functional or aesthetically pleasing).
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1.4 The Rise of Cognitive Modelling
The modern era of empirical/cognitive psychology is often dated to the work of
Ebbinghaus (1885), who set himself tasks such as learning lists of nonsense words
in order to study the processes underlying memory. Since that time, the study of
cognitive processes has gone through several shifts in emphasis and approach.

Early researchers used introspection as their primary empirical technique. At
the beginning of the twentieth century introspection was criticised as being subjec-
tive and hence non-scientific. The rejection of introspection was accompanied by
the rise of the Behaviourist School, which dominated psychology in the English
speaking world for much of the first half of the twentieth century. Behaviourists
believed that internal mental states could not be studied in an objective manner.
They avoided all talk of mental states, and attempted to account for all behaviour
in terms of simple stimulus-response links.

Around the middle of the twentieth century it was demonstrated conclusively
that, at least for some higher mental processes such as language and skilled be-
haviour, simple stimulus-response links could not explain the full range of be-
haviours of which most humans are capable. It was shown that stimulus-response
links were necessarily mediated by internal mental states, and hence that internal
mental states were essential for causal explanations of these cognitive processes.
Behaviourism was thus supplanted by a new psychology. The picture of cognition
that arose in this new psychology was one in which the mind was an “information
processor” and cognition was “information processing”.

Within information processing psychology, sensory processes (such as vision
and hearing) act as input devices, converting information from the surrounding
environment into some internal form or representation. Mental processes manip-
ulate and transform these representations, often triggering responses via output
processes. This view of cognition has received support from fifty years of care-
ful empirical work and remains current. The last half of the twentieth century,
however, witnessed two major changes in approach. First, computer simulation
techniques were adopted in order to explore and develop complex theories of cog-
nitive processing and to evaluate competing theoretical accounts of empirical phe-
nomena. The use of these techniques is one of the distinguishing features of the
discipline of cognitive science. Second, brain imaging techniques were developed
in order to localise cognitive processing and relate the functioning of the mind
to the functioning of the brain. This relation is the primary focus of the newly
emerged discipline of cognitive neuroscience.

Computer simulation techniques have allowed cognitive models such as that
described in the previous section to be developed. To illustrate further consider
the list-learning experiments of Ebbinghaus (1885). A cognitive model of list-
learning would detail the mechanisms or processes by which the stimuli (the el-
ements of the list) are stored and recalled, and any possible intervening mecha-
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nisms or processes involved in information consolidation (e.g., rehearsing the list)
or information loss (e.g., through forgetting elements of the list). Such a model is
considered in Chapter 2.

1.5 Modelling and Simulation
In many scientific domains modelling provides a way of investigating the rules
or laws that govern complex systems that are only partly understood. This is nor-
mally achieved through building a model that we think will have similar character-
istics to the real system and studying the characteristics of the model. Modelling
within cognitive science follows this basic approach, with simulation being the
principal method of studying a model’s characteristics.

A common example of simulation is seen in modern weather forecasting. This
involves determining relevant characteristics of the atmosphere, such as tempera-
ture, air pressure, and wind speed, across a grid of points, and then using mathe-
matical equations that describe how the characteristics change with time to predict
the values for the characteristics a short time later. By applying the mathematical
equations over and over, meteorologists simulate the weather and are able to pre-
dict characteristics of the atmosphere at some later time. The simulation does not
involve real wind currents or real temperatures. Instead, elements of the model
(e.g., arrays of numbers) correspond to characteristics of the object of simulation.

The use of simulation in cognitive modelling parallels that in meteorology. A
cognitive model specifies a number of processes, the initial characteristics of those
processes, and the way in which those characteristics change through interactions
with other processes within the model. Simulation involves repeatedly working
through all of the interactions to determine how the characteristics of the system
change over an extended time period.

Simulation is particularly useful when it is difficult to understand the be-
haviour of the system being modelled. Any system that is made up of many
interacting components can be difficult to understand. If, in addition, some or
all of those components have properties which make them individually difficult
to understand, then understanding of the complete system is likely to be compro-
mised further. This can happen when the components are:

heterogeneous (i.e., there are many qualitatively different kinds of compo-
nent within the system, each of which is idiosyncratic so their behaviour
cannot be summarised with some uniform function);
non-linear, stochastic and/or asynchronous in their response functions (i.e.,
components produce outputs that cannot be simply extrapolated from pre-
vious outputs, and they produce such outputs at times determined by the
components themselves, rather than by some external clock);
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Figure 1.1: Some relations between behaviour, a cognitive process underlying
that behaviour, a theory of the process, and a model of the process. The left panel
shows the classical relations. The right panel shows the added dimension provided
by modelling.

densely connected to other components (i.e., there are many interactions
between components); and
recursively defined (i.e., components are themselves defined in terms of
sub-components with these properties).

Unfortunately many psychological theories posit interacting processes or compo-
nents that share many or all of these properties. Psychological theories are thus
often highly complex. Simulation provides an effective means of determining the
consequences or predictions of such interacting processing systems.

Indeed, most aspects of cognitive processing have formed the target of one or
more cognitive models. Thus there are cognitive models of perceptual processes
(such as those involved in analysing a visual image), attentional processes, motor
and action control processes, memory, problem solving, reasoning, categorisa-
tion, and so on. In most cases, the techniques of simulation have led to greater
understanding of the underlying cognitive processes.

1.6 The Role of Cognitive Modelling
Standard theorising in cognitive psychology is concerned with three types of en-
tity: behaviours, cognitive processes underlying behaviours, and theories of those
cognitive processes. Figure 1.1 (left) illustrates some of the relations between
these three types of entity. The “classical” view (without modelling) is that a the-
ory explains a behaviour by describing the cognitive processes that generate that
behaviour. Modelling adds an extra dimension to this picture. A model generates
behaviour, implements a theory, and simulates a cognitive process (as shown in
the right panel).
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Each object and relation in Figure 1.1 could form the focus of substantial dis-
cussion. For present purposes we will focus on just one triangle from the figure:
that involving theory, behaviour (or empirical phenomena), and a model that im-
plements the theory and generates the behaviour.

A theory in cognitive psychology typically takes the form of a series of re-
lated statements or assumptions, perhaps supplemented with a diagram. As in
most sciences a theory is generally intended to “explain” some known empiri-
cal phenomena, and make predictions about other phenomena. The explanation
consists of an argument demonstrating that the known empirical phenomena are
consequences of the assumptions, and the predictions are additional assertions that
may be tested through experiment. If the predictions are met then the theory gains
further support. If the predictions are not met the theory is falsified and must be
modified or abandoned. This is not a bad thing, for it means that we have learnt
something: that one or more of the theory’s assumptions is false.

This simplified picture is somewhat idealised. In most cases theories within
cognitive psychology are under-specified in that the assumptions are incomplete or
imprecise. Correspondingly, the relation between assumptions and data (including
both prior data and predicted data) is generally qualitative rather than quantitative.
Cognitive modelling helps to address these issues, and hence serves an important
role in cognitive scientific explanation.

Few theories within cognitive psychology are stated in precise and unambigu-
ous terms. Modelling forces theoretical precision by requiring that a theory be
computationally complete. That is, in order to construct a model it is necessary
to specify all aspects of a theory in the kind of detail required by a computer pro-
gram. This means that no details can be left out, and that no aspects of a model
may be vague, ambiguous, or open to alternative interpretations. Thus, although
a model may abstract away some details of cognitive processing, it must still be
“computationally complete”.

As discussed below, the requirement for computational completeness is not
without a cost, but it also has a subsidiary benefit — that of supporting clear,
precise communication. A computational model can be an effective way of ex-
pressing and communicating a theory in objective terms. Verbal or diagrammatic
theory specifications are generally open to interpretation. Models presented in
clear publicly-specified theoretically-neutral computer languages do not suffer
from this difficulty. In certain cases they also lend themselves to formal analysis of
their properties, allowing theoreticians to derive logically necessary consequences
from the theoretical assumptions without even running the computer model.
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1.7 Further Benefits of Cognitive Modelling
Theories of cognitive processing are frequently complex. As noted above, it can
therefore be difficult to accurately determine the behaviour of a theory by reason-
ing directly from its assumptions. This is especially true for theories that posit
multiple heterogeneous sub-processes and when the explanations of empirical
phenomena depend upon interactions between these sub-processes. A significant
advantage of cognitive modelling is that it allows detailed evaluation of such the-
oretical proposals. Furthermore, once a model has been developed it is possible
to investigate the impact of changes in theoretical assumptions on the model’s be-
haviour. Modelling thus allows both evaluation and exploration of theories and
their consequences.

A further benefit of cognitive modelling arises from its use as a supplement
to cognitive neuropsychology. Cognitive neuropsychology is concerned with dif-
ferent patterns of behaviour that follow neurological damage, and the use of such
patterns to inform theories of normal cognitive functioning. The relevance of cog-
nitive modelling to cognitive neuropsychology lies in the fact that once one has
developed (and evaluated) a model of normal cognitive functioning in some do-
main (e.g., language production), one can “damage” or lesion the model in some
principled way and then compare the behaviour of the lesioned model with that
of relevant neurological patients (e.g., patients with language production deficits).
A successful model will be able to account for both normal and impaired perfor-
mance.

The relation between modelling and cognitive neuropsychology goes both
ways. While modelling can further our understanding of cognitive functioning
and its breakdown, the breakdown of cognitive functioning can also provide a
source of data against which models may be tested.

1.8 Some Objections to Cognitive Modelling
Much cognitive modelling is motivated by the benefits described above, but cog-
nitive modelling is not without its difficulties. These difficulties primarily arise
from the need to make detailed assumptions about representation and processing
that are necessary for execution of the model. The detail of these assumptions
means that they may be very difficult to justify empirically. Two arguments —
that of the behaviourist and that of the cautious scientist — require special con-
sideration.

As we have seen, the behaviourist approach to psychology held that psycho-
logical theories should deal only with observables of behaviour. They should not
theorise about processes that intervene between the input (stimulus) and the out-
put (response), because such processes cannot be observed. While behaviourism
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is no longer popular, the need to specify intervening processes in the kind of detail
required by cognitive modelling may leave some with an uneasy feeling.

At present there are few cognitive scientists who dispute the existence of inter-
vening processes. It is possible that neuroimaging techniques will one day provide
direct evidence for the detail of these processes, but until that day cognitive scien-
tists must adopt other means to provide support for their theorising about interven-
ing processes. These means may include appeals to principles such as simplicity
and parsimony. For example, given two theories that claim to account for the same
behaviour, one may favour the theory with fewer assumptions or simpler interven-
ing processes. Stronger support may be obtained, however, by using modelling to
ensure that the theories are complete and fully consistent with behaviour. In other
words, the response to the behaviourist’s objection is that intervening processes
have proven to be necessary in accounting for the complexity of cognitive func-
tioning. Given that such processes are necessary, cognitive modelling allows us
to examine the nature and consequences of hypothesised intervening processes in
detail.

The cautious scientist is less sceptical about intervening processes than the be-
haviourist, but is still uncomfortable about making assumptions that are not fully
justified on empirical grounds. To illustrate, a scientist studying memory for lists
of words may be happy to postulate a process of memory decay, whereby words
of the list gradually become unavailable for recollection. If this process is to be
incorporated into a model, however, one must specify details of the process. Is
decay a probabilistic process whereby words may spontaneously disappear from
memory, or can memory representations vary in their strength, with decay affect-
ing strength? In the former case, what function governs the probability of a word
decaying at any specific moment? In the latter case, how does strength change
with time, and is there some strength threshold below which words are inaccessi-
ble? The cautious scientist may argue that he or she has insufficient evidence to
answer these questions, and hence prefer to settle for a less detailed description
of the decay process. As a result, he or she will be inclined to balk at models
that include specification that goes beyond that which can be justified on purely
empirical (or even theoretical) grounds.

The cautious scientist’s objection is a less extreme form of the behaviourist’s
objection. It is an objection to the computational completeness that modelling
requires. Whether this is a limitation or disadvantage of cognitive modelling is
unclear. It could be argued, for example, that computational completeness is a
significant advantage, for it makes clear that the stance of the cautious scientist is
incomplete. An additional benefit of cognitive modelling is therefore that it can
make clear to us the limitations of our knowledge. Knowing what we don’t know
is an important stage in understanding.

Of course the counters to these objections do not absolve the modeller from
a basic responsibility: to relate models to both theory and data. One of the great
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strengths of cognitive modelling is the way that it may complement the approaches
of empirical and theoretical psychology.

1.9 Approaches to Cognitive Modelling
While those who practice cognitive modelling generally agree on the benefits of
the enterprise, they often disagree about how the enterprise should be approached.
There are several schools of cognitive modelling, and advocates of one are fre-
quently critics of another. The schools differ in their assumptions about mental
representation and their view on the relation between a cognitive model and the
brain.

The connectionist school argues that properties of the neural tissues that im-
plement the information processingmechanisms of the mind are critical to the way
the mind works. As such, they build models that consist of many simple interact-
ing units functioning in parallel. The units are typically understood as analogues
of neurons or neural cell assemblies. Symbolic cognitive models, in contrast, gen-
erally make the assumption that information processing can be described in terms
of the manipulation of symbolic representations (as defined below). Within the
symbolic approach the neural substrate is viewed as an implementation medium
that is of secondary importance.

The symbolic and connectionist approaches to modelling share little beyond
the basic idea that the functioning of the mind is computational in nature and so
can be simulated by a machine. The two approaches are frequently presented as
disjoint and even in opposition to each other. However, both approaches have
strengths and weaknesses. This has led to attempts to develop hybrid symbolic/
connectionist systems that combine the strengths and circumvent the weaknesses
of the individual approaches.

Two further approaches to modelling are the architectural approach and the
dynamical approach. The former involves adopting a hypothesised organisation
of the complete set of information processing structures that comprise the mind/
brain, and using this to guide the development of models. The latter is more
mathematical in emphasis. In its most extreme form it argues against the use of
internal mental representations of the form used by any of the other approaches.
The claim of the dynamical approach is that mental processing may be described
by differential equations in much the same way as the trajectory of a comet may
be described by differential equations, but, as in the case of the comet, mental pro-
cessing does not involve solving equations. Rather, it involves responding to the
mental equivalents of forces. The dynamical approach, with its rejection of mental
representation, is not well suited to modelling high-level cognitive processes, and
will not be discussed further in this book.
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1.9.1 Symbolic Models
The symbolic approach to cognitive modelling developed from early work by
Newell and colleagues (e.g., Newell, Shaw, & Simon, 1958; Ernst & Newell,
1969) on logical inference and human problem solving. After developing an ex-
plicit theory of problem solving, they specified the theory as a sequence of steps
that could be performed by a computer program.

Symbolic Propositional Representations

An essential element of the early computational work of Newell and colleagues
was the representation of information relevant to a problem in a symbolic, proposi-
tional form, and the manipulation by the program of this representation. Consider
a simple descriptive statement such as:

the red pyramid is on the blue cube

This may be analysed as a conjunction of propositions concerning the objects (a
pyramid and a cube), their properties (red and blue, respectively), and the rela-
tion between the two (that the pyramid is on the cube). The information may be
represented formally as follows:

& & & &

Each conjunct of this representation is a symbolic proposition: a statement that
consists of symbols (e.g., or ) which refer to objects, properties, or relations,
and that may be either true or false, depending on the state of the objects to which
the proposition applies.

Symbolic propositional representations have two desirable properties: system-
aticity and compositionality (see Fodor & Pylyshyn, 1988). A representation is
systematic if it consists of a number of parts and the result of replacing some of
the parts with other parts of the same kind is also a meaningful representation.
Thus, if is a meaningful representation and and both refer to ob-
jects, then will be a meaningful representation. It may not be true, but
it will be meaningful. A representation is compositional if it consists of parts and
the meaning of the whole is a function of the meaning of the parts. The represen-
tation is compositional because it consists of parts ( , and ) and its
meaning is a function of the meaning of those parts. Representations that are com-
positional and systematic may be manipulated by rules that are dependent only on
the form of the representation and not on the meaning of the representation. It is
this manipulation that is central to many symbolic cognitive models.

Symbolic representations may also be embedded to represent information of
arbitrary complexity. Thus, the statement that:

Joe believes that the pyramid is green
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may be represented by the compound proposition:

&

Similarly the statement that:

Joe believes the blue pyramid to be green

may be represented by the compound proposition:

& &

Note that the proposition may be true even if the em-
bedded proposition is false.

Symbolic propositional representations provide a general means of represent-
ing information. Symbolic models adopt this general representational device, and
supplement it with symbol manipulation rules that operate on representations to
transform them or build new representations. A symbolic cognitive model is there-
fore a model of the mechanisms by which symbolic propositional representations
are manipulated and transformed from one form to another.

A Simple Symbolic Model

To illustrate symbolic modelling consider the task of transitive inference (as inves-
tigated by, for example, DeSotto, London, &Handel, 1965; Clark, 1969). Subjects
performing the task are given two statements concerning individuals and relations
between them (such as Anna is shorter than Beth and Caroline is taller than Beth)
and asked to either judge the truth of a third statement (e.g., Is Anna shorter than
Caroline?) or to generate a true statement concerning the two unrelated individu-
als (if such a statement exists).

How might a symbolic model perform the transitive inference task? Such a
model might first convert the given statements into propositional form. It could
then apply rules of inference to the propositions in order to test or derive a conclu-
sion. In the simplest case of deriving a conclusion, this might proceed as follows:

Given statements:
Anna is taller than Beth
Beth is taller than Caroline

Propositional encoding:

Inference rule 1 (part of long-term knowledge):
&

Result of applying rule 1:
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Verbal decoding:
Anna is taller than Caroline

In this, and all examples throughout this book, symbols beginning with a capital
letter (e.g., , , ) denote variables, which may be mapped onto other symbols
(e.g., the individuals , and ) in the application of an inference
rule.

Only one inference rule is required for the above simple case. Suppose how-
ever that we are dealing with a more complex case, in which the given information
involves both taller and shorter. For example:

Given statements:
Anna is shorter than Beth
Caroline is taller than Beth

Propositional encoding:

Inference rule 2 (long-term knowledge):

Result of applying rule 2:

Inference rule 1 (long-term knowledge):
&

Result of applying rule 1:

Verbal decoding:
Caroline is taller than Anna

This case requires one extra step: use of a second inference rule to transform
the shorter relation into a taller relation. One might therefore predict from this
simplest of models that the second case will take subjects longer than the first case.
Indeed, this has been found to be the case (DeSotto et al., 1965; Clark, 1969).
The account therefore receives some empirical support. Furthermore, empirical
evidence points to faster solution times when information is stated in terms of
taller as opposed to shorter, supporting the transformation of shorter to taller,
rather than the reverse.

Symbolic Programming Languages

Several symbolic computer programming languages have been created to simplify
the development of systems that use symbolic representations. The two most pop-
ular such languages are Lisp (e.g., Winston & Horn, 1981; Wilensky, 1984) and
Prolog (e.g., Bratko, 1986; Sterling, 1986; Clocksin & Mellish, 1987). Lisp was
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developed in the early 1960s by John McCarthy and colleagues at MIT (based in
part on work by Newell, Shaw and Simon at CMU). Prolog was developed by
Alain Colmeraur and colleagues in France in the early 1970s. There are signif-
icant differences between the languages, but both provide ways of representing
symbolic and propositional information, as well as variables and mechanisms for
binding symbols or propositions to those variables. A great many symbolic mod-
els have been developed in Lisp and/or Prolog, and the languages continue to be
popular for symbolic cognitive modelling.

Production Systems

Lisp and Prolog are general purpose symbolic programming languages. This
means that while each supports the symbolic representation of information, each
also employs a generic, flexible, control mechanism that is motivated by mathe-
matical and logical concerns. Consequently the languages impose minimal con-
straints on models developed within them. This may be appropriate, however it
has been argued that general purpose programming languages fail to capture im-
portant aspects of the nature or character of mental processing: specifically that
mental processing can be understood in terms of the cyclic application of rules to
a representation of one’s current beliefs. This view has led to the development of
production systems, which are general frameworks within which symbolic models
may be expressed.

A production system consists of two fundamental components: a propositional
database or store (in which current propositions, such as ,
are stored) and a rule database (in which inference rules are held). Production
systems function in a cyclic manner, with each cycle consisting of two phases. In
the recognise phase, an inference rule is selected from the rule database according
to a set of standard principles. In the act phase the selected rule is applied. The
result is typically an alteration to the propositional store. The cycle may then
repeat, with a different rule being selected and applied. Processing terminates
either when the recognise phase fails to select a rule or when the selected rule
explicitly signals the end of processing.

A production system’s propositional store is generally referred to as its work-
ing memory, and the propositions contained in the store are referred to as work-
ing memory elements, or WMEs. The rule database (which may include many
thousands of rules) is referred to as production memory, and the rules within
the database are referred to as productions. Productions correspond to long-term
knowledge, including both general knowledge and task-specific knowledge, and,
like the inference rules in the previous section, typically contain variables that
allow them to apply to many different WMEs.

More formally, a production consists of a set of conditions and a set of actions.
For example, a variant on inference rule 2 (from the previous section) might con-
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sist of one condition and two actions:
IF:
THEN: delete

add
This particular rule employs two kinds of actions (working memory addition and
deletion), but other actions are possible (e.g., issuing motor commands, or termi-
nating processing).

The variables contained within the rule ( and ) mean that the rule may apply
to any instance of the shorter relation. An instantiated production or production
instance results from mapping or binding the variables. Thus, in the previous
production rule and might be bound to and respectively, yielding
the following production instance:

IF:
THEN: delete

add
The result is an instruction to transform a specific instance of the shorter relation
into the equivalent taller relation.

This example demonstrates that productions may add or delete specific propo-
sitions to or from working memory. WMEs, in contrast to productions, are gen-
erally specific and transient. As processing proceeds working memory evolves
through the addition and deletion of individual WMEs as each production is ap-
plied. Productions, in contrast to WMEs, are non-specific and long-term. They
are non-specific because they contain variables (and hence may apply in a range
of situations). They are long-term because once entered in production memory
they are generally not deleted.

One of the key elements of a standard production system is its conflict resolu-
tion procedure: the process within the recognise phase that governs the selection
of one instance of a rule from all possible rule instances. Often, during the recog-
nise phase, the contents of working memory will be such that the conditions of
many different rules are met, and even a single rule may have its conditions met
by many different WMEs (leading to many different instances of the rule). Differ-
ent production systems employ different principles for selecting one rule instance
from the set of applicable rule instances. Example mechanisms include: avoid-
ing rule instances that have been selected previously, favouring rules with many
conditions (and hence which are specific to the current situation) over rules with
few conditions (which are more general and may be seen as specifying default
or fall-back behaviours), favouring rules whose conditions match recently created
WMEs over rules whose conditions matchWMEs that have been present in work-
ing memory for some time, associating activation values with rule instances and
selecting the most active rule instance, and (if all else fails) selecting one rule
instance at random from those that have not been ruled out by other principles.
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A production system model therefore consists of three components: a conflict
resolution strategy (normally viewed as a fixed processing mechanism); a speci-
fication of the initial contents of working memory (i.e., the information on which
the subject is able to act); and a set of productions (specifying both task-specific
knowledge and general knowledge relevant to the task). Detailed examples of spe-
cific production systems applied to simple arithmetic are discussed in Chapter 3.

Analogies may be drawn between elements of the production system approach
and the possible structure of the mind. In particular, the production system con-
cept of working memory is an analogue of the psychological concept of working
memory, and the production system concept of production memory is an analogue
of the psychological concept of long-term memory. While these analogies are in-
triguing, they should not be taken literally. For example, the production system
concept of working memory is generally not limited in capacity or subject to de-
cay. The psychological concept is. Similarly, production memory is not normally
divided into different types of long-term memory. In contrast, many psychologists
distinguish between several forms of long-term knowledge, including procedural
and declarative, and within declarative between episodic and semantic.

Production systems date back to the work of Post (1943), with the first imple-
mentations developed in the 1950s. However, it is of some interest to note that
many production system concepts (such as rule-based processing and condition-
action associations) were preempted over 20 years earlier by Selz (1913, 1922),
an Austrian psychologist from the Gestalt school (see Chapter 4). Selz argued, at
a time when British and American psychology was strongly behaviouristic, that
problem solving involved the mental application of condition/action rules, and
that associations between stimuli and responses were a function of the properties
of and relations between stimuli in a given situation. Both notions are clearly
visible in current conceptions of production systems.

1.9.2 Connectionist Models
One fundamental assumption of symbolic modelling is that cognitive functioning
is largely independent of the implementation medium (i.e., neural tissue). This
allows the development of abstract models that are based on high-level symbol
manipulation. The connectionist approach rejects this assumption. Advocates of
connectionism argue that properties of neural tissue (such as massively parallel
computation through the interaction of many simple processing units) are of criti-
cal importance in modelling cognitive processes, and that cognition emerges from
the interactions between processing units. From this perspective, they argue, it is
a mistake to try to understand cognition purely in terms of the manipulation of
symbols.
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Table 1.1: Featural representations of some animals

Animals
is mammal can fly has fur has long tail is vegetarian

Person 1 0 0 0 0
Cat 1 0 1 1 0

Fe
at
ur
es

Dog 1 0 1 1 0
Bat 1 1 0 0 0
Bird 0 1 0 1 0
Mouse 1 0 1 1 1

Parallel Distributed Processing

Neurophysiology tells us that the brain consists of many billions of neurons. Each
neuron may be analysed as a simple computing device which receives electrical
impulses from other neurons. If the sum of impulses received in quick succes-
sion is sufficiently great, the neuron generates its own impulse, and transmits
this to other neurons. Individual neurons operate in parallel, and computation
is distributed across many interconnected neurons. The connectionist school of
cognitive modelling has adopted an abstraction based on this parallel distributed
approach to computation, and developed models of cognitive processes in terms
of interacting networks of simple computing units.

Feature-Based Representations

The rejection of symbol manipulation by connectionism entails the rejection of
symbolic propositional representations. It does not, however, entail the rejection
of mental representation. Rather, it calls for a different approach. Standard con-
nectionist networks consist of sets of nodes, with nodes having activation values
(which may be thought of as corresponding to the firing rates of neurons). A rep-
resentation in a connectionist network is thus a configuration of activation values
across a set of nodes.

To illustrate, consider the highly artificial case of a network consisting of five
nodes, with each node representing one of the following five features: is mammal,
can fly, has fur, has long tail, and is vegetarian. A pattern of activation in which
the first node is highly active and all other nodes are inactive might represent (or
characterise) a person (or the category of people). Different patterns of activity
across the nodes may represent different animals (or categories). Thus, Table 1.1,
in which active nodes are indicated by the digit 1 and inactive nodes by the digit
0, illustrates the activities of nodes corresponding to a range of animals.
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If we adopt a fixed order of features, we may represent the various types of
animals by feature vectors. A person would correspond to the vector ,
and a cat would correspond to the vector . Note that this representa-
tion is unable to distinguish between cats and dogs: both have the same featural
representation. In practice, many more features are typically needed to discrimi-
nate between possible represented objects.

Feature-based representations are well able to represent instances of objects or
classes of objects (depending on the interpretation of the representation), but they
lack the expressive power of symbolic propositional representations. Thus, the
representation of relations between objects is only possible through indirect means
(e.g., by using separate units to represent the relation and each object that lies in
the relation) and those means generalise poorly to the representation of embedded
propositions. While these limitations are not insurmountable (see Pollack, 1990),
connectionist models nevertheless tend to focus on aspects of cognition that do
not require the representation of relational information.

An Illustrative Model

To illustrate a simple connectionist-style model consider the task of category
learning (e.g., Kendler & D’Amato, 1955; Kendler & Kendler, 1975). Subjects
performing this task are presented with a set of objects or exemplars that differ
along several dimensions (e.g., colour, shape, size), and required to learn which
objects belong in which categories. After being shown an object, the subject may
nominate a possible category. If the subject is incorrect he or she will be told the
correct category. Most subjects are able to learn this task after a few tens of tri-
als (assuming the number of dimensions is not too great and the categories share
some underlying structure).

Consider the near trivial case in which objects differ along two dimensions
(size and colour), with large objects belonging in category A and small objects
belonging in category B. A connectionist model of performance on the task might
consist of two sets of nodes, with four nodes in one set – the “input” nodes, cor-
responding to the features large, small, black and white— and two nodes in the
other set — the “output” nodes, corresponding to the categories A and B. Each
node in the input set would have a connection to each node in the output set, as in
Figure 1.2.

Connections within connectionist networks are weighted, and activation may
“flow” along a connection in proportion to the connection’s weight. If the weights
of the connections in Figure 1.2 from large to A and from small to B are near
to one, and all other weights are near to zero, presentation of the feature vector

(representing a large black object) to the input nodes will cause the
output node for category A to become active. In contrast, presentation of the
feature vector (representing a small white object) will cause the node
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small

black

white

large
A

B

Figure 1.2: A simple network for the categorisation task

for category B to become active.

Learning, Generalisation and Graceful Degradation

Connectionist networks often exhibit several properties that make them particu-
larly appropriate for modelling cognitive phenomena: learning from examples,
generalisation to new examples, and graceful degradation in the face of ill-formed
input or damage to the network.

Learning Suppose the connection weights in Figure 1.2 are initially set to ran-
dom values. When an input vector is presented to the network, the output nodes
will become active. For each input vector there is a unique target output vector
(either or ). If the output generated by a given input fails to match the
correct output (which is available to the subject, because the subject is given feed-
back on his or her categorisations), then the connection weights may be adjusted
to improve the input/output mapping. For example, if the activation of an output
node is greater than in the target pattern, then the weights on all connections feed-
ing positive activation to the node should be decreased by a small amount (and
the weights on all connections feeding negative activation to the node should be
increased by a small amount). The opposite adjustment may be made if the acti-
vation of an output node is less than in the target pattern. Such weight adjustments
will result in the network generating a more accurate categorisation when the in-
put pattern is repeated at a later time. This is the basis of delta-rule learning, a
simple but effective learning algorithm for one class of connectionist network.

When applied to the categorisation task described in the previous section,
delta-rule learning results in strong weights between input features and output
categories that co-occur. If, however, a feature is sometimes present and some-
times absent in a category (e.g., black or white, when categorisation is based on
size), then the weight from the node representing that feature to the target cate-
gory will be increased on some trials and decreased on other trials. If the feature
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is entirely independent of the category, the increases and decreases will average
out and the resultant weight will be close to zero.

Generalisation One variant of the concept learning task involves presenting
subjects with one set of exemplars in a training phase, and allowing subjects to
learn the categories of all exemplars through feedback. Subjects are then pre-
sented with new exemplars, which share some but not all features with items from
the training set. The subject’s task is to generalise from previous experience and
categorise these new exemplars. Connectionist networks provide a natural ap-
proach to such generalisation tasks, and for many tasks networks can be demon-
strated that exhibit generalisation performance similar to that of human subjects.

Modelling Degraded Input Connectionist networks also lend themselves to
modelling tasks in which input representations are partially degraded (correspond-
ing, for example, to visual input under suboptimal viewing conditions, or auditory
input with high levels of background noise). Feature-based input representations
may be corrupted by random perturbations to one or more features with minimal
effects on the network’s behaviour. This allows the development of networks that
show effects of input degradation similar to those obtained in experiments involv-
ing human subjects.

Graceful Degradation Large scale connectionist models, coupled with now
standard learning techniques, typically develop some redundancy in their func-
tioning. Consequently, such networks are relatively unaffected by minor damage
(such as removing some nodes or some connections, or adding noise to activation
values). This graceful degradation has been argued to provide a realistic reflec-
tion of the behaviour of the brain after natural cell death or even after minor brain
damage. Several studies have also shown that larger scale damage to normally
functioning connectionist networks can yield behaviours similar to those exhib-
ited by patients with significant neural damage (e.g., Plaut & Shallice, 1993).

Types of Connectionist Network

Many different types of connectionist network have been developed. The net-
work in Figure 1.2 is a simple feed-forward network (also known as a perceptron)
consisting of two layers of nodes mediated by one layer of connections. Such
networks are limited in their computational power: it can be shown mathemati-
cally that there are certain stimulus/response mappings that they cannot perform
(Minsky & Papert, 1988). This limitation is not present in multi-layer perceptrons
— feed-forward networks consisting of additional layers of units that mediate the
stimulus/response relation— but such networks require more complex approaches



1.9. APPROACHES TO COGNITIVE MODELLING 23

to learning, and such approaches are generally considered to be biologically and
psychologically implausible (Crick, 1989).

The layered structure of feed-forward networks also imposes limits on the se-
quential behaviour of such networks. Thus, feed-forward networks can only per-
form stimulus/response mappings in which a single response is associated with a
single stimulus. They cannot perform mappings in which different responses are
associated with different sequences of stimuli. Recurrent networks (see Jordon,
1986; Elman, 1990) overcome this limitation by including feedback connections
between layers. These connections feed a representation of the state of process-
ing at one point in time back into earlier layers of the network. Such connections
allow, for example, the pattern of activation of an internal layer of nodes pro-
duced while processing one stimulus to affect the processing of the next stimulus.
Recurrent networks have been used to model some of the sequential aspects of
language.

Networks with feedback connections may also be used for non-sequential
tasks by fixing the input vector and allowing repeated cycles of processing until
the output vector stabilises. Networks of this form, which are known as attrac-
tor networks, have been used to model recognition processes, where a degraded
representation of a stimulus may be refined through successive processing cycles
(see, for example, Plaut & Shallice, 1993).

Networks need not have a layered structure. Associative networks (Hopfield,
1982; Hertz, Krogh, & Palmer, 1991) do not distinguish between input and output
nodes. Any node within an associative network may be connected to any other
node and functioning of the network corresponds to fixing or clamping the activa-
tion values of some nodes and allowing activation to flow along connections until
the activations of unclamped nodes stabilise. Associative networks effectively act
as pattern completion devices. They may be trained (again using standard learning
algorithms) to store a number of activation patterns. After training the presentation
of a partial pattern results in reconstruction of the original pattern. Interference
between stored patterns may occur, giving associative networks some properties
similar to human memory (Hopfield, 1982).

A different style of processing is evident in interactive activation networks.
Nodes within these networks generally represent relatively high level concepts
(e.g., letters or words: McClelland & Rumelhart, 1981), and “compete” for acti-
vation through processes of self excitation and mutual inhibition (see McClelland,
1992). Thus within McClelland and Rumelhart’s interactive activation model of
word recognition (McClelland & Rumelhart, 1981), nodes representing words re-
ceive excitation from nodes representing letters (which in turn receive activation
from nodes representing features of the visual input), but word nodes mutually
inhibit each other. Mutual inhibition ensures that only one word node may be
active at a time. Similar inhibitory processes operate at the letter level to ensure
that only one letter at each position of the word is active at a time. Interactive
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activation networks are appropriate for modelling tasks in which multiple sources
of information interact to yield a single discrete outcome.

1.9.3 Hybrid Symbolic/Connectionist Models
Symbolic and connectionist approaches to modelling have both strengths and
weaknesses. Arguably, the strengths of one approach are the weaknesses of the
other, and vice versa. There is therefore the possibility that more adequate cog-
nitive models may be developed by adopting a hybrid approach, in which both
symbolic and connectionist aspects are incorporated. Cooper and Franks (1993)
distinguish two types of hybrid model, corresponding to two ways in which sym-
bolic and connectionist approaches have been combined. Physically hybrid mod-
els consist of separate symbolic and connectionist subsystems. These subsystems
typically perform different functions and interact to yield the behaviour of the
system as a whole. Non-physically hybrid systems, in contrast, consist of a single
system (which is fully symbolic or fully connectionist), but that system can be
described as functioning in both symbolic and connectionist terms.

The rationale for the physically hybrid approach is as follows. Symbolic mod-
els have achieved their greatest successes in relative high-level cognitive domains,
such as reasoning and problem solving. Low-level domains, such as perception,
are better modelled by connectionist approaches. This view is supported by the
fact that there are relatively few tasks or domains for which both symbolic and
connectionist models exist. It also suggests that tasks that can be decomposed
into a mixture of high-level sub-processes and low-level sub-processes might be
best modelled by hybrid systems in which separate subsystems perform the sepa-
rate sub-functions.

One system that employs the physically hybrid approach is Sun’s model of
common-sense reasoning (Sun, 1994). The model uses two subsystems: a sym-
bolic system for representing reasoning rules (such as all men are mortal) and
a connectionist system for representing the “sub-conceptual content” of the el-
ements involved in those rules (e.g., the concept of Socrates and the category
of men). Sub-conceptual content is represented using fine-grained feature-based
representations. Links between the subsystems allow the simulation of flexible
rule-based reasoning.

The non-physically hybrid approach is well illustrated by the connectionist
production system of Touretzky and Hinton (1988). Touretzky and Hinton showed
how connectionist techniques could be used to implement the structures and pro-
cesses of a typical symbolic production system (including working memory, pro-
duction memory, and symbolic rules containing variables). In principle, a sym-
bolic production system model of a specific task could be simulated by Touretzky
and Hinton’s system by providing the system with an appropriate, feature-based
representation of the symbolic rules. The functioning of such a system could be
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legitimately described in both connectionist and symbolic terms.

1.9.4 Cognitive Architectures
The last decade has seen the rise of an alternative approach to cognitive mod-
elling that is orthogonal to the symbolic/connectionist distinction. This is the use
of cognitive architectures (Newell, 1990). Cognitive architectures are theories of
the large-scale structure and organisation of cognitive processing. They are theo-
ries of the functional subsystems that make up the mind/brain, and the modes of
interaction between those subsystems.

The concept of cognitive architecture derives from an analogy with that of
computer architecture. A computer architecture consists of a configuration or
structuring of a number of components (a central processing unit, a data bus,
RAM, disk drives, input and output devices, etc.). A cognitive architecture simi-
larly consists of such a configuration, where components may include a short-term
or working memory, a long-term memory, a language subsystem, perceptual and
motor subsystems, one or more learning mechanisms, and so forth.

Cognitive architectures attempt to provide a general framework or set of con-
straints within which models of specific tasks or domains may be developed. The
basic approach was first championed by Newell (1990) (see also Newell, 1973).
Examples include Soar (Laird, Newell, & Rosenbloom, 1987; Newell, 1990),
ACT-R (Anderson, 1983, 1993; Anderson & Lebiere, 1998), CAP (Schneider &
Detweiler, 1987; Schneider & Oliver, 1991), and EPIC (Meyer & Kieras, 1997;
Kieras, Meyer, Ballas, & Lauber, 2000). Soar and EPIC are symbolic architec-
tures based on production system concepts. ACT-R, which is described further
below, is a hybrid architecture. CAP is a connectionist architecture.

The architectural perspective on cognition views behaviour on any particular
task as the product of a general architecture working with task-specific knowl-
edge. Development of a model of a task within an architecture therefore involves
supplying the architecture with appropriate task-specific knowledge. For archi-
tectures based on production systems, this generally involves supplying an appro-
priate set of production rules. For other architectures it involves supplying the
knowledge in the form of input/output patterns with which the architecture may
be trained.

Of the above mentioned architectures, ACT-R is currently the most highly in-
fluential. ACT-R is a physically hybrid architecture. At its centre is an activation-
based production system. This consists of the standard production system com-
ponents (as described in Section 1.9.1), augmented with a learning mechanism
and perceptual and motor subsystems. What makes ACT-R distinctive is that el-
ements in working memory have activation levels, and these activations may be
propagated to production instances. Conflict resolution is then effected by firing
the first production instance that becomes sufficiently active. Production firing re-
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sults in the addition of new working memory elements, the excitation of existing
elements, or the execution of motor commands. ACT-R has been used to model
a wide range of phenomena, including choice tasks, arithmetic, memory for word
lists, analogy, and dual task performance (Anderson & Lebiere, 1998).

1.10 Strategies for the Use of Simulation
There are thus several distinct approaches that may be adopted in developing a
cognitive model. There are also several distinct ways in which modelling and
simulation may be used to advance our knowledge and understanding. Simula-
tion provides a collection of tools and methods that can be used within different
scientific disciplines for different scientific purposes and even at different stages
in the development of a field. The following paragraphs consider some of the dif-
ferent strategies for using computer simulation within cognitive modelling. The
strategies are discussed in order of increasing scientific power.

The first kind of simulationmethodmight be called a “fishing trip”, by analogy
with the angler who casts a fishing rod into a pond with little idea of what may be
in the pond, or even if there is anything of interest in the pond at all. The angler
may be gambling but is probably not wasting his or her time, because after a few
casts some useful information may have been found about the pond. Either there
are fish in the pond, or there probably aren’t, and one should try fishing elsewhere.

The fishing trip method of simulation therefore consists of attempting to de-
velop a model of some task or behaviour in order to learn more about the task.
Fishing trips can be useful to cognitive scientists just as they are to anglers, par-
ticularly when they are trying to make sense of a new approach or a new scientific
area. In trying to build a simulation of some task, for example, we may discover
that we are unclear about what we think the problem is, what the possible solu-
tions are, that the kind of theory we were thinking about is too simple, or even that
there is some very good reason why it cannot work at all.

The second strategy involves implementing a pre-existing (verbally specified)
theory, and determining if the theory behaves as claimed. This form of modelling
is particularly useful when the verbal theory is highly complex. This form of mod-
elling is a kind of sufficiency test: it allows one to determine if a set of theoretical
assumptions (as outlined in the verbal specification) is sufficient to account for the
target behaviour. If they are sufficient, all well and good. If they are not, one may
then go on a fishing trip in an attempt to find how they might be altered.

A different approach to simulation involves carrying out an a priori analysis
of the properties of the kind of theory that is being considered. One may develop a
model and determine, for example, how sensitive its behaviour is to the underlying
theoretical assumptions. In this way one may identify critical parameters and
appropriate values for those parameters. Equally one may identify theoretical
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assumptions that are secondary — assumptions that have non-significant effects
on the behaviour of the model.

Finally, the most powerful use of simulation techniques is in supporting the
conventional use of the hypothetico-deductive method that is widely used by sci-
entists across many disciplines. This method involves using a model to simulate
behaviour beyond that which was employed in the development of the model,
and thereby generating predictions or hypotheses. These hypotheses may then be
tested by conducting behavioural experiments with real people. If people behave
as the model predicts then the model gains empirical support.

1.11 Closing Remarks
In this chapter we have discussed the nature and roles of cognitive modelling
and described the principal modelling techniques that have been adopted by the
cognitive science community.

Historically, different sub-communities have taken rather different approaches
to modelling. Some have preferred to take a “top-down” approach starting with
high level cognitive functions like reasoning or problem solving and trying to
understand the kinds of cognitive processes that are needed to implement such
functions, and traditionally the methods adopted have emphasised symbol ma-
nipulation and representation of knowledge. Other scientists have preferred a
“bottom-up” approach, to give a detailed account of observed behaviour in tasks
like concept learning or reading; these are often well-explained by connection-
ist or statistical mechanisms. Arguments between these two communities can be
quite vigorous, frequently centering on the question of whether the mechanisms
of mind/brain are “really” symbolic or “really” connectionist.

Another dimension along which cognitive models can be compared concerns
whether they set out to provide unified accounts of cognitive processes, typically
as large-scale information processing architectures, or whether they are “micro-
models” of small scale phenomena. Debates are again lively. Advocates of micro-
modelling argue that cognitive scientists should put explanation of natural phe-
nomena first, and not build theoretical palaces that cannot be justified empirically.
Other scientists emphasise the need to develop unified theories of intelligence and
cognition, and the information processing principles that make any kind of in-
telligence possible. This dimension actually implies a trade-off between broad
theoretical generality and detailed empirical adequacy, so examples of models can
be found at all points in between the two extremes.

In this book we set out to be inclusive rather than disputatious. To do this we
have tried to demonstrate an integrated approach to cognitive modelling which we
hope will have something to offer to researchers of all persuasions. In particular
we introduce a set of tools and methods, collectively called the COGENT cognitive
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modelling environment, which we think can be used to support many cognitive
modelling styles. We believe that COGENT can offer this for several reasons.

First, we view the set of tools that COGENT offers as merely that, tools; we
don’t need to take a position on whether the different kinds of representation that
the system offers embody some sort of truth about the mind or brain. As we have
discussed, computational models are intrinsically abstractions from reality, and
modelling always represents some kind of approximation. It is up to the individual
COGENT user to decide to what extent his or her model embodies reality.

Second, we observe that different ways of thinking and modelling are pro-
ductive in different sub-areas of cognitive science, so COGENT supports several
standard approaches. COGENT users may build rule-based, activation-based, sim-
ple connectionist or even conventional numerical simulations. Indeed they may
even build hybrid models that combine different representations.

Third, we have tried to provide sufficient representational and computational
power to permit scientists to build simulations at grossly different scales, from
micro-models to unified architectures or anywhere in between. Indeed a user can
arrange that different parts of the system of interest are modelled at different levels
or detail. COGENT supports a highly modular approach to modelling cognitive
systems, with any or all modules programmable at a coarse level, or in finer detail
by recursively composing modules out of smaller components to whatever level is
required.

Finally, we believe that COGENT is equally sympathetic to the theoretician and
the empirically minded scientist. We believe that it offers an unprecedented range
of formal tools with the expressive power to accommodate many different theo-
retical frameworks. On the other hand we know that science proceeds through
systematic experiment, with careful collection and analysis of data in varied and
controlled conditions, and rigorous comparison of predictions and observations.
Apart from the modelling tools COGENT provides it also includes facilities for
managing computational experiments, automatically running simulations under
varying assumptions and storing the data, comparing simulation results with lab-
oratory data, and so on. We hope that subsequent chapters will clearly demon-
strate these capabilities, and help to build bridges between the many different
sub-communities of cognitive science.

1.12 Further Reading
Dawson (1998) provides an excellent introduction to the computational theory be-
hind cognitive science, including chapters on symbolic modelling, connectionist
modelling, and the relation between the two. Dawson also discusses the key is-
sue of levels of description, which is addressed in several places throughout this
book. Further background is provided in the opening chapters of Green andOthers
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(1996).
There are relatively few texts that focus on symbolic modelling. Scott and

Nicolson (1991), which provides a set of “cognitive science projects”, is one ex-
ception. A more advanced text, which focuses on the production system approach,
is Klahr, Langley, and Neches (1987). Anderson and Lebiere (1998) is also of
considerable interest. This book presents a number of symbolic models spanning
several high-level cognitive domains. It uses the ACT-R cognitive architecture to
provide a unified framework for the models.

The connectionist approach is better served by texts. Much of the connection-
ist revival in the 1980s can be traced to the two volumes by McClelland, Rumel-
hart and the PDP research group (McClelland & Rumelhart, 1986; Rumelhart &
McClelland, 1986b), and these remain of significant scientific interest. More re-
cent texts includeMcLeod, Plunkett, and Rolls (1998) and O’Reilly andMunakata
(2000). The second of these is also strong on the rationale of cognitive modelling.

Van Gelder (1998) presents a manifesto for the dynamical approach to mod-
elling. The manifesto is accompanied by a number of critical commentaries. Ex-
amples of the dynamical approach can be found in the edited collection of Port
and van Gelder (1995).

The case for cognitive architectures is presented by Newell (1990, 1992).
Newell’s focus is on one specific “candidate” architecture, Soar, but his arguments
are phrased in general terms. Some concerns about the architectural approach are
expressed in the commentaries accompanying Newell (1992), and by Cooper and
Shallice (1995).




