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1.   As part of the development of the Symbolic and Sub-symbolic 
Robotics Intelligence System (SS-RICS) we have implemented a 
memory store to allow a robot to retain knowledge from 
previous experiences.  As part of the development of the event 
memory store, justification for an off-line, unconscious memory 
process was tested.  Three strategies for the recognition of 
previous events were compared.  The first strategy stored all 
memories and searched all of the memories for a match to the 
current event.  The second strategy searched memories while an 
event was taking place and started the search with the most 
recent memory first.  Finally, a third strategy post-processed all 
memories using pruning, abstraction, and cueing.  Pruning 
removed memories, abstraction used categories to reduce metric 
information and the cueing process provided pointers for the 
recognition of episodes.  We found that post-processing 
memories as an unconscious process was the most efficient 
strategy.  This computational implementation provides a 
justification for the post-processing of memories as an efficient 
means of memory retrieval. 
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2.   Introduction 

The Human Research and Engineering Directorate (HRED) of the U.S. Army Research 

Laboratory (ARL) is developing a robotics system called the Symbolic and Sub-symbolic 

Robotics Intelligence Control System (SS-RICS) [Kelley, 2006].  The Cognitive Robotics 

Team of HRED is conducting a series of field tests to implement SS-RICS onto a variety 

of robotics systems.  We have based SS-RICS on the Adaptive Character of Thought-

Rational (ACT-R) [Anderson and Lebiere, 1998] cognitive architecture.  Implementing 
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SS-RICS on a robotics platform required changes and additional functionality that 

expanded the learning and developmental capabilities of the existing architecture.  

Specifically, while ACT-R included modules for handling declarative memories and 

procedural memories, it did not include a specific episodic memory store.  We developed 

such an episodic memory store to allow a robot to learn from its experiences.  As part of 

this development process, we discovered that consolidating episodic memory as a post-

hoc process was an advantageous methodology as compared to other real-time strategies.  

During the post-hoc processing of episodic memories, we added an associative cue to 

anticipated episodes which proved to be more beneficial, in terms of speed, than trying to 

remember episodes in real time without the cue.  In this manuscript we will discuss a 

computational justification for the unconscious, post-hoc, memory process we 

implemented. 

3.   Background 

Why do we sleep?  Why would an organism allow itself to lapse into an unconscious 

state - removing itself from real world interactions, leaving itself susceptible to attack 

from predators, unable to react to potentially dangerous situations - unless the process 

was extremely beneficial?  From a cognitive perspective, there must be some benefit to 

sleep which outweighs the hazards associated with such a dangerous unconscious state.  

 

Humans exist or experience the world in three types of consciousness: waking, Non-

Rapid Eye Movement (REM) sleep, and REM sleep [Siegel, 1996].  Sleep in humans has 

primarily two stages to include REM sleep (where dreaming occurs) and non-REM sleep 

[Aserinsky and Kleitman, 1953]. While sleep in humans appears to be a non-conscious 

state, the brain is actually very active during the sleeping process [Hobson, 1988].  The 

dreaming mind is processing information while perceptual information from the outside 

world is simultaneously being blocked [Crick and Mitchison, 1983].  This exclusion of 

outside stimuli would appear to be a dangerous unconscious state were it not for some 

kind of resultant beneficial processing.   What is the benefit from this unconscious state? 

 

Early theories concerning the function of sleep characterized sleep as “unlearning” or 

that, “we dream in order to forget” [Crick and Mitchison, 1983].  Crick and Mitchison 

[1983] proposed that noisy or irrelevant dream content was activated within the brain 

during a dream so that it could be “unlearned.”  This hypothesis that random events were 

activated during sleep as dream content so that they could be “unlearned” was consistent 

with the “activation-synthesis” model of sleep [McCarley & Hobson, 1977; Hobson, 

1988; Hobson, et al., 2000].  This hypothesis was supported by studies of dream content, 

which appeared to suggest that dreams were essentially random thoughts [Wolf, 1994].  

However, other researchers noted that dreams are not completely random and that dreams 

were often repetitive or contained the same general themes [Domhoff, 1993].  Moreover, 

an extensive study of 58 young adults noted that most dreamers were able to give, “a 

detailed account of realistic situations” and “people caught up in very ordinary activities” 
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[Snyder, 1970].  So data indicated that dreams are reenactments of everyday situations 

and less random than might have been suggested by Freudian theory or the later 

activation-synthesis theory [Domhoff, 1993].  

 

Episodic memories have been identified as an important component to cognition and 

learning [Tulving, 1983] as well as being involved in dreaming and sleep [Fosse et al., 

2003].  Studies indicate that sleep plays an important role in memory reorganization, 

especially episodic memories stored in the hippocampus [Pavlides & Winson, 1989; 

Wilson & McNaughton, 1994].  Animal studies indicate that REM sleep increases 

following training sessions for both cats and rats; and that sleep deprivation after training 

sessions impairs the retention of previously presented information [Pearlman, 1979].  

Several studies of human sleep support the conclusion that episodic memories are 

replayed during dreaming usually from the preceding day’s events (Cavallero & Cicogna, 

1993; Arkin & Antrobus, 1978; De Koninck & Koulack, 1975].   

 

In 1995, Squire and Alvarez noted that memory consolidation might occur during sleep 

and that “slow wave sleep” contained some “interesting properties” that would make it a 

candidate for memory consolidation during sleep.  They also noted that “consolidation 

occurs when the neocortical representations are repeatedly co-activated by the medial 

temporal lobe.”  Additionally, they note that memory consolidation is a process by which 

memory becomes independent of the hippocampus (which contains episodic information) 

and that episodic information is abstracted away from the hippocampus during memory 

consolidation.  This abstraction process of episodic memory was the computational goal 

for this research. 

4.   Computational implementations of sleep 

Unfortunately, the post processing of episodic memory has not been extensively studied 

or implemented in computational cognitive models, however, Nuxoll and Laird [2007] 

implemented an episodic memory system in Soar.  This implementation was designed to 

increase the speed of retrievals and show the functional usefulness of episodic memory as 

a cognitive structure.  Similar to our study, they improved memory retrieval times by 

using cues and pointers for the indexing of episodic memory retrieval.  However, their 

methodology was not executed as a post-hoc process.   

 

Others studies, most notably, Alvarez and Squire [1994], developed a simple neural 

network model of memory consolidation which used two interacting networks to simulate 

working memory and Long Term Memory (LTM).  The working memory components 

(hippocampus) of the model had its connection strengths change very quickly, and were 

short lasting, while the LTM components (neocortical) of the model had its connection 

strengths change slowly and were long lasting.  From this relatively simple model of 
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memory consolidation the authors were able to reproduce results similar to animals 

studies and produce temporally graded retrograde amnesia [Alvarez and Squire, 1994]. 

 

In Zhang’s [2009] neural network model of sleep episodic sequences are replayed either 

in order, or in random sequences, to simulate the random nature of dream sequences.  The 

results replicated functional aspects of dreams and sleep.  Using episodic memories can 

also be seen as a form of case based reasoning.  There have been case based reasoning 

models which performing learning tasks in “batch mode” during “off-peak” hours [Ram 

and Santamaria, 1997], however, newer case based reasoning models operate in real time 

to avoid the delay from learning in batch mode [Sharma et al., 2007]. 

 

 

As part of computational implementation of cognition for SS-RICS, we were interested in 

using episodic memory as part of a learning process.  We were especially interested in 

quickly retrieving memories during events in order to match previous memories to 

current events.  We were also interested in remembering certain events as being novel.  

From this initial set of criteria we developed three strategies for memory retrieval.  These 

strategies included 1) Complete Memory Search: store every event and retrieve the best 

match while a novel event was taking place  2) Recent Memory Search: storing only 

novel events and searching recent novel events first while a novel event was happing 3) 

Episodic Indexing: Storing both novel and boring events and post process these events to 

improve the retrieval process.  Additionally, searching the most recent novel events first.  

 

In order to process episodic memories from the robot, we were initially interested in 

identifying the memories as novel or unusual, based on an algorithm developed for 

landmark identification [Kelley & McGhee, 2013].  The novelty algorithm captures a 

window of data of a specific length and uses a histogram of correlations to determine the 

amount of change over the course of the window.  If there was a significant amount of 

change across the window the histogram registers very few correlations around 1 - 

signifying a novel event.  If there was very little change, the histogram will show a large 

number of correlations around 1 - indicating boredom.  However, this algorithm was too 

slow in determining change in the environment so instead we used a movement detection 

algorithm which indicated change much faster and was better suited for our first set of 

experiments.  The movement algorithm sensed movement immediately while the novelty 

algorithm took several seconds (a window) worth of data to determine a novel scene.  

Ideally, we would like to transition from the use of the movement algorithm in the current 

study to the use of the novelty algorithm in future studies as more information is learned 

and gathered as events. 
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5.   Procedure 

 

 

Fig. 1.  A sample event.  The beginning and ends of different episodes are referenced by the numbers and 

elaborated in the text as Episodic Segment Numbers (ESNs) to aid in the explanations. 

We defined an event as a collection of episodes (see Figure 1).  An episode was 

considered an instance of data within an event.  Any number episodes could add up to a 

single event.  Figure 1 is one event with a collection of nine episodes.  The numbers in 

Figure 1 correspond to important starting and ending points for the entire event.  The 

critical points are referenced in the manuscript as Episodic Segment Numbers (ESN) to 

aid in explanation.  In Figure 1, the dark segments represent static episodes (no 

movement) and the light segments represent movement episodes.  Specifically, ESN 1 is 

the beginning of a static episode; ESN 2 is the end of the first group of static episodes; 

ESN 3 is the beginning of the movement episode; ESN 4 is the end of the group of 

movement episodes;  ESN 5 is the beginning of the next group of static episodes and 

ESN 6 is the end of the last group of static episodes. 

1
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5.1.   Strategy Comparison 

The task for the robot was simple.  The robot was to recall the presentation of a target (a 

yellow flashlight) following the presentation of a different target (a red tool case) (see 

Figure 2).  Note that the robot was not making a semantic determination; instead the 

robot was determining whether or not it had seen some particular object, with some 

particular set of features, at a particular point in time.  The semantic aspects were not 

important for the event to be remembered or anticipated.  We wanted this capability so 

that the robot could accomplish episodic consolidation autonomously without prior 

semantic knowledge.  

 

We converted the corr2 2-D correlation algorithm from MathWorks MATLAB into C# 

code for this work.  The algorithm compares the currently viewed image to a previously 

stored image on disk and returns a correlation value between 1 and 0 as output. 

 

Additionally, the robot utilized an attention loop similar to the OODA loop [Ford, 2010] 

with the addition of an Evaluation segment.  As part of the OODA loop the robot 

Observed the world; Oriented to the world (based on inputs from the world (i.e. motion)); 

Decided on an action (retrieve a memory or pay attention to the movement episode) and 

finally executed an Action (remember the object or pay attention to a movement episode).  

The last Action was also Evaluated for reinforcement.  In other words, was SS-RICS 

successful in remembering the object?  So Evaluation was added to the end of the OODA 

loop creating the OODAE loop.  

 

The robot was shown each object in sequence (object 1 then object 2, object 2 then object 

1) by moving a monocular camera back and forth between the two objects.  

 

 

 

 

 

 

 

 

Fig. 2.  The two objects that were used for the task. The robot extracted color, proximity, and size features from 

each object and detected the motion of the camera. 

5.1.1.   Strategy 1 – Complete Memory Search 

We obviously knew that a complete memory search was not an efficient or practical 

strategy for memory retrieval, however, it served as a baseline for additional 

comparisons.   
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The robot collected images (metric data) and generated symbolic representations 

(declarative data) as we moved the camera back and forth between the two objects shown 

in Figure 2.  The robot created 600 directories of images, each containing a JPEG image 

of approximately 100KBs, and generated the corresponding declarative information.  The 

Complete Memory Search Strategy retrievals were executed while the motion event was 

occurring and were both declarative and metric.  This strategy led to a linear increase in 

retrieval times with the addition of new memories (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Number of milliseconds for each retrieval following a movement event.  We found a linear increase for 

each retrieval. 

5.1.2.   Strategy 2  – Recent Memory Search 

Unlike the Compete Memory Search Strategy, which stored all the information (static 

and movement), the second strategy, the Recent Memory Search, only stored the 

movement episodes (from ESN 3 to ESN 4).  The initial idea was that only movement 

episodes were important and subsequently only those episodes should be stored.  

Additionally, the Recent Memory Search Strategy used activation [Anderson and 

Lebiere, 1998] and searched from the most recent declarative memory backwards, 

essentially concentrating on the most recent memories for a possible match; creating the 

recency effect (where the most recent facts are more likely to be remembered). 

 

The data gathered for the Recent Memory Search was done in a similar fashion as the 

Complete Memory Search, using the same image correlation retrieval algorithm for a 

metric match as well as a declarative memory match.  One data set is presented in Figure 
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4.  The data pattern shown in Figure 4 was representative of the other runs that were 

conducted.   

 

The data gathered for the test of the Recent Memory Search allowed for the OODAE 

loop to execute 400 times.  Note that the OODAE loop was executing while the camera 

was moving back and forth and while the camera was still.  Therefore the OODAE loop 

could execute several times during one event, producing several retrievals within one 

event (each episode might involve a retrieval). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Number of milliseconds for metric matches using the correlation algorithm within five events.  We 

found a gradual improvement until an adequate match could not be found, at which point the retrieval times 

increased as the search space increased. 

The times listed in Figure 4 for each event occurred between ESN 3 and ESN 4 (see 

Figure 1).  The data pattern shown in Figure 4 was typical of the type of data we found 

using the Recent Memory Search.  The retrieval times in Figure 4 are within one event (x 

axis), which involved multiple retrievals to find the best match.  Note that event 1 is not 

at time 00:00, but rather, it is the first movement event that occurred after some number 

of static events.   

 

In Figure 4, the first retrieval took more than 4,000 milliseconds (because there was not a 

good match to begin with), but then quickly got reduced to less than 500 milliseconds 

after more data was gathered and the most recent matches could be used.  By event four, 

the data seemed to suggest that all the retrieval times for each event were getting faster 
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and the Recent Memory Search Strategy was a useful strategy because it was matching 

the most recent data.  Event four showed that the time required by all the retrievals in the 

event was less than 500 milliseconds.  However, by event five, we again saw an increase 

in times for a retrieval to around 4,000 milliseconds because SS-RICS could not find a 

suitable match even in the most recent data.  

 

The data showed in Figure 4 were typical of Recent Memory Search across several runs.  

In general, the system was constantly matching to the most recent set of memories and 

the retrieval times for a match would decrease up to a point at which a good match could 

no longer be found, at which point more memory was searched to find an adequate match 

and the general pattern would repeat again.  

5.1.3.   Strategy 3 – Episodic Indexing 

The Episodic Indexing Strategy inserted a pointer at the end of a static event (ESN 2) 

which served as a cue for the subsequent movement events (ESN 3).  This modification 

was conducted as post-hoc processing on each episode and on both the declarative and 

metric data.  The entire process involved three main components: 

 

1) Pruning - Static memories were removed from memories to produce a 

reduced data set. 

2) Abstraction – Declarative memories containing metric data were abstracted 

as symbolic categories to reduce storage and reduce retrieval times.  

3) Cues – Cues were inserted into the episodes to create one complete event.  

Specifically at ESN 2, 3, 4 and 5 (see Figure 1). 

 

As part of the data gathered for the Episodic Indexing Strategy each object was shown in 

the pattern outlined in Figure 2 – a camera being moved back and forth between two 

objects.   

 

For the pruning process, the static declarative information and static metric information 

were removed during a post-hoc process.  This occurred from ESN 1 up to ESN 2, but 

ESN 2 was kept.  The critical factor for this strategy was that the last static episode 

served as a cue for the next movement episode.  This meant that both movement episodes 

and static episodes had to be stored initially so that the static episodes could serve as a 

cue for the movement episodes.  The process of refining both static episodes and 

movement episodes appeared to be best accomplished as a post-hoc process. 

 

For the abstraction process, the declarative information contained at ESN 2, 3, 4, and 5 

was processed post-hoc and stored as a complete new event.  For example, as part of the 

abstraction process, new categorical declarative information was created to reduce the 

amount of metric information in the original declarative memory.  Specifically, a green 
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object with an area of 2120 pixels and a red object with an area of 7500 pixels was 

reduced to “biggest object=RED” (see Table 1 and Table 2).  These same principles of 

abstraction were applied to the other declarative memories representing the event.   

 

For pruning, ESN 2, 3, 4 and 5 were kept and information between ESN 1 and ESN 2 

was removed, with ESN 2 being kept to serve as a cue.  Additionally, static information 

after ESN 5 was removed (see Figure 1).  This created a reduced declarative memory set 

(see Table 2).   

 

As previously mentioned episodes were created during each OODAE loop.  Before the 

post-hoc processing, when an episode was created, it contained both metric and 

declarative information (this was the same for all the strategies).  In contrast to the metric 

data, the declarative memory was stored in working memory and ordered by activation 

while the metric data for each image was stored on the disk.  All of the episodic 

memories were then reduced to the example in Table 2 following post-hoc processing. 

 

Table 1. An example of episodic declarative memories before the Episodic Indexing Strategy. 

 

Name Type GreenArea YellowArea RedArea Pointer Movement 

1 Episode 0 1223 7500 14 False 

 2 Episode 0 9000 0 15 True 

3 Episode 0 0 0 16 True 

4 Episode 0 0 0 17 True 

5 Episode 0 9788 0 18 True 

6 Episode

s 

0 9989 1250 19 False 

 

Table 2. An example of the declarative memories representing one complete event following the 

Episodic Indexing Strategy. 

 

Name Type Pointer Event Cycle Color 

1 Dream 14 1 1 Red 

2 Dream 15 1 2 Yellow 

3 Dream 18 1 3 Yellow 

4 Dream 19 1 4 Yellow 

 

The information contained in Table 2 is an example of the declarative memories 

produced after the Episodic Indexing Strategy.  It represents one event that was created 

as the result of the post-hoc processing of episodes.   

 

The amount of abstraction across multiple runs was fairly consistent.  For example, with 

400 episodes captured during the training run after post-hoc processing we were left with 



 Robot Dreams: A Computational Justification For The Post-Hoc Processing Of Episodic Memories. 
11 

 

112 declarative memory elements and corresponding metric information (112 directories 

containing image data).  Those 112 declarative memory elements represented a total of 

28 events (4 declarative memory elements per event (see Table 2)).  So we had a 

reduction of about a forth by getting rid of the static episodes using pruning.  We used 

four declarative memories to represent one abstracted event.  Each new memory 

contained a unique name, a type, a pointer, the event number, the cycle number, and the 

color of the biggest object in the scene.  Note that the pointer was the essential 

information contained in the newly created declarative memory.  It was a pointer to the 

metric data stored on the disk.  In other words, in Table 2, the metric information for the 

declarative memory element named “4” of type “dream” was contained in directory “19.”  

This pointer allowed the system to quickly retrieve metric information once a symbolic 

declarative match had been made. 

 

In order to implement the Episodic Indexing Strategy we used the following steps: 

1) While SS-RISCS was viewing an object, and there was no movement, the system 

would set a retrieval goal. The goal retrieved a declarative memory that matched the 

current scene at the symbolic level.  Specifically, the camera was viewing the world, 

which in this case was a large red object, and SS-RICS was retrieving declarative 

memories which matched “large red object” (i.e. declarative memory 1 from Table 2).  

This type of working memory symbolic retrieval based on activation can be done 

extremely quickly and was further enhanced by the fact that it was done during moments 

of static activity.   

 

2) Following the retrieval goal, assuming SS-RICS found symbolic match, the pointer in 

the declarative memory was then utilized.  The pointer was used to compare the current 

scene to the metric data (using image correlation) stored on disk.  The metric data was 

not in working memory (other than as a pointer) and these correlation comparisons were 

slower than symbolic working memory comparisons in the production system.  However, 

this metric information was critical because it served to bolster the information at the 

abstracted symbolic level and confirmed the scene as a match.  For example, this type of 

metric match allowed SS-RICS to discriminate between two difference types of red 

objects, since the metric information contained more detailed data than the symbolic data.  

To summarize, the first match was a working memory symbolic match and the second 

match was a more detailed LTM metric match.   

 

3) Following a match of both the metric data and the symbolic data, SS-RICS then 

retrieved a declarative memory representing the result of the event.  If it had been 

viewing a red object, the result would have been to expect a yellow object (see Table 2).  

At this point SS-RICS waited for the event to occur (movement) and was primed to 

anticipate a certain object (yellow object).   
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4) After the event completed, the LTM metric information was retrieved at the end of the 

event to confirm the result of the event.   

 

Results showed that the metric match for the Episodic Indexing Strategy, as compared to 

Complete Memory Search and Recent Memory Search, was faster.  Below is a trace from 

SS-RICS of what the Episodic Indexing Strategy produced. 

 

1) Waking up… 

2) Attending to world 

3) Remember Dream Episode Default 

4) Cognitive Time is 1 

5) Remember Dream Episode Default 

6) Cognitive Time is 2 

7) Subject Directory/43 

8) Correlation .9115 

9) Cognitive Time is 3 

10) Subject Directory/43 

11) Correlation .9115 

12) Cognitive Time is 4 

13) Motion State is True 

14) Motion State is True 

15) Motion State is True 

16) Subject Directory/56 

17) Correlation is .8162 

18) Duration time is .208 

 

As you can see from the trace, the SS-RICS took a few cycles of inactivity (Remember 

Dream Episode Default, lines 3 and 5), before it found a sufficient metric and symbolic 

match to the current scene - which occurred on line 8.  At that point it had acquired a 

pointer to the appropriate metric information (located in directory 43, Line 7) and it had 

retrieved the appropriate declarative memory information for the entire event (See Table 

2).  Once the event started (movement), SS-RICS was essentially free to allocate 

resources (pay attention) the incoming information since it knew what to expect and was 

not doing retrievals.  This was different from the Recent Memory Search which was 

doing retrievals during movement episodes.  Also note that SS-RICS had an expectation 

as to how long the event would take place (about 5 attention cycles, from 14 to 19, see 

Table 2).  Once the movement of the camera stopped, the final image was correlated with 

the image in directory 56 and reported (correlation value .8162, Line 17).  Since the cue 

was already set this process was almost instantaneous (.208 seconds, Line 18).  

Additional data collected using this strategy produced similar results (see Figure 5). 
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Fig. 5.  Number of milliseconds for a final metric retrieval following the post-hoc processing of events.  Each 

bar is the time associated with the last metric retrieval, using the image correlation algorithm, at the end of the 

event (ESN 5) to positively confirm an expected result. 

The amount of time the post-hoc processing phase took after the data were collected was 

dependent upon the number of working memory items in the episodic trace.  

Additionally, the post-hoc process was not optimized to be as efficient as possible 

because it was written as a set of goals within SS-RICS instead of in C#.  However, for 

this implementation of 400 memories, which accounted for approximately 30 seconds of 

real-time experience, the post-hoc process took approximately 3 minutes. 

6.   Future Work 
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This research has given us the opportunity to explore many possible directions for future 

work.  Our most immediate goal is to integrate this process with our current novelty 

algorithm [Kelley & McGhee, 2013]. This would allow SS-RICS to transition from 

movement based events to novelty based events which are collections of movement 

events.  Following this transition, novel events would become less and less novel as the 

robot gained more and more experience.  Ideally, the robot would become more 

accustomed and familiar with its environment and find less information novel. 

 

Our initial implementations of this memory retrieval task assumed that movement 

episodes were the most important information to store.  And that the retrieval of the 

metric information, while movement was happening, would not be a problem 

computationally (Recent Memory Search Strategy).  However, we found that both 

movement and static episodes needed to be stored (Figure 1) so that the static episode 

could provide a cue to the movement episode.  Computationally, we found that 

attempting to retrieve a movement episode while an object was moving meant that some 

of the current movement information might be missed - and that the retrieval was not 

efficient. 

 

For further research we need to incorporate an expectation model.  The model would be 

based on the percentage of times the robot encountered some expected outcome.  This 

can be handled as an expectation utility algorithm and will be further explored.  If 

different outcomes are encountered, that are not part of the current expectations, the 

utility functions would be updated. 

 

We would also like to relate our instances of events to conceptual primitives which would 

allow for generalization from conceptual templates [Mandler, 1992].  In this case the 

conceptual primitive would be something similar to, “one object replaced another 

object.”  Upon the completion of an event, the event would be matched to the conceptual 

primitive and the concept could potentially change.  This could be done as a post-hoc 

process or in real-time.   

 

Also, notice that each event is made up of four episodes (see Table 2) which represent the 

end of the static episode (ESN 2) the beginning of the movement episode (ESN 3), the 

end of the movement episode (ESN 4) and the beginning of the next static episode (ESN 

5).  It could be that these four bits of information are all that are needed to abstract an 

event into an efficient declarative memory element which represents the entire event, but 

this could be further researched. 

 

Additionally, metric information should be stored in working memory so that the metric 

retrievals are much faster.  In a sense, we are storing the metric information in working 

memory but only as a pointer to make it as small as possible, and to keep it essentially 

symbolic.  In fact, it would be difficult to store the image based metric information in 
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working memory of a production system due to the amount of information, so using a 

pointer to the metric information seems to be a solution for now. 

 

Finally, there is a question for us as to why this post-hoc processing has to be 

accomplished as an unconscious state instead of being accomplished in real time 

following an event.  For example, why cannot the associative memory cues, pruning, and 

abstraction be set immediately following a novel event?  For humans, there is some 

indication that learning can be accomplished during restful situations with no REM sleep.  

For example, goal based learning has been found to be improved and consolidated during 

REM sleep, but procedural motor learning has been shown to be improved and 

consolidated during restful periods. [Cohen et al., 2005].  Other studies have found that 

procedural learning is also improved during REM sleep [Gais et al., 2000].  From our 

simulations, it would appear that procedural learning has a clear advantage for post-hoc 

processing, since motor learning can be especially time critical and procedural tasks 

would presumably benefit from extremely fast retrievals of associated information. 

Computationally there is also some advantage to generating an unconscious state and 

shutting off the perceptual system to allow for memory consolidation to occur.  This 

unconscious state allows the events to be replayed and consolidated without being 

confused with real time events.  However, there could be some computational problems if 

the post-hoc process was interrupted by outside perceptual processes and required to start 

over again.  This would lead to the computational equivalent of “grogginess.”  Assuming 

the brain is an analog system there might be some additional benefits during sleep to 

“rewind” events to get to the appropriate cue locations – thus requiring an effortful 

unconscious state.  Indeed, it is clear that in humans, and in most other animals, sleep is 

an effortful, unconscious process and there is a general need for it to occur during periods 

when there is reduced external stimuli.  For SS-RICS, we will continue to explore both an 

unconscious state for the robot during moments of inactivity as well as post-hoc 

processing in real-time during uneventful periods.  

7.   Conclusions 

We implemented a post-hoc memory process that was more advantageous, in terms of 

efficient memory retrievals, than other strategies that were not implemented as a post-hoc 

process.  This computational implementation appears to provide a computational 

justification for a post-hoc memory reorganization process seen in most mammals as 

sleep. 

 

For robots it would appear that the post-processing of events is beneficial for the 

improvement of retrieval times by using cues, abstraction, and pruning.  Further research 

needs to be done to determine the specifics of this process to optimize it for robotics 

applications.  



16     Troy Dale Kelley 

 

References 

Alvarez, P., & Squire, L. R. [1994] Memory consolidation and the medial temporal lobe: a simple 

network model. Proceedings of the National Academy of Sciences, 91(15), 7041-7045. 

 

Anderson, J. R., & Lebiere, C. [1998] The Atomic Components of Thought.  Mahwah, N. J: 

Lawrence Erlbaum Associates.  

 

Arkin, A., & Antrobus, J. S. (Eds.) [1978] The mind in sleep. Hillsdale, NJ: Erlbaum. 

 

Aserinsky and Kleitman [1953] Regularly occurring periods of eye motility, and concomitant 

phenomena during sleep. Science, 1953 118 273-274. 

 

Cavallero, C., & Cicogna, P. [1993] Memory and dreaming. In C. Cavallero & D. Foulkes (Eds.), 

Dreaming as cognition. Harvester Wheatsheaf. 

 

Cohen, D. A., Pascual-Leone, A., Press, D. Z., & Robertson, E. M. [2005] Off-line learning of 

motor skill memory: a double dissociation of goal and movement. Proceedings of the National 

Academy of Sciences of the United States of America, 102(50), 18237-18241. 

 

Crick, F., & Mitchison, G. [1983] The function of dream sleep. Nature, 304(5922), 111-114. 

 

De Koninck, J. M., & Koulack, D. [1975] Dream content and adaptation to a stressful situation. 

Journal of Abnormal Psychology, 84(3), 250. 

 

Domhoff, G. William Moffitt, Kramer Alan. (Ed); Kramer, Milton (Ed); Hoffmann, Robert (Ed), 

[1993] The functions of dreaming. SUNY series in dream studies., (pp. 293-320). Albany, NY, US: 

State University of New York Press, x, 610 pp.  

 

Ford, D. [2010] A Vision So Noble: John Boyd, the OODA Loop, and America's War on Terror. 

Daniel Ford. 

 

Fosse, M.J., Fosse, R., Hobson, J.A., & Stickgold, R.J. [2003] Dreaming and episodic memory: a 

functional dissociation? J. Cogn. Neurosci. 15:1-9. 

 

Gais, S., Plihal, W., Wagner, U., & Born, J. [2000] Early sleep triggers memory for early visual 

discrimination skills. Nature neuroscience, 3(12), 1335-1339. 

 

Hobson, J. A. [1988]. The dreaming brain. Basic Books (AZ). 

 

Hobson, J.A., Pace-Schott, E., & Stickgold, R. [2000] Dreaming and the Brain: Towards a 

Cognitive Neuroscience of Conscious States. Behavioral and Brain Sciences 23:793-842. 

 

Kelley, T. D., & McGhee, S. [2013, May] Combining metric episodes with semantic event concepts 

within the symbolic and sub-symbolic robotics intelligence control system (SS-RICS). In SPIE 

Defense, Security, and Sensing (pp. 87560L-87560L). International Society for Optics and 

Photonics. 

 

Kelley, T. D. [2006] Developing a psychologically inspired cognitive architecture for robotic 

control: the Symbolic and Sub-symbolic Robotic Intelligence Control System (SS-RICS). 



 Robot Dreams: A Computational Justification For The Post-Hoc Processing Of Episodic Memories. 
17 

 

International Journal of Advanced Robotic Systems, Vol. 3, No. 3. p 219-222. 

 

Nuxoll, A. M., & Laird, J. E. [2007, July]  Extending cognitive architecture with episodic memory. 

In Proceedings of the National Conference on Artificial Intelligence (Vol. 22, No. 2, p. 1560). 

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999. 

 

Mandler, J. M. [1992] How to build a baby: II. Conceptual primitives. Psychological review, 99(4), 

587. 

 

McCarley, R. W. Hobson, J. A. [1977] The neurobiological origins of psychoanalytic dream 

theory. The American Journal of Psychiatry, Vol 134(11), Nov 1977, 1211-1221.  

 

McCarley, R.W. & Hobson, J.A. [1979] The form of dreams and the biology of sleep, In: B.B. 

Wolman (Ed.) Handbook of dreams. Research, theories and applications [pp. 76-130). New 

York: Van Nostrand Reinhold Co. 

 

Pavlides, C., & Winson, J. [1989] Influences of hippocampal place cell firing in the awake state on 

the activity of these cells during subsequent sleep episodes. Journal of Neuroscience 9:2907-2918. 

 

Pearlman, C. A. [1979] REM sleep and information processing: evidence from animal studies. 

Neuroscience & Biobehavioral Reviews, 3(2), 57-68. 

 

Sharma, M., Holmes, M. P., Santamaría, J. C., Irani, A., Isbell Jr, C. L., & Ram, A. [2007, 

January]. Transfer Learning in Real-Time Strategy Games Using Hybrid CBR/RL. In IJCAI (Vol. 7, 

pp. 1041-1046). 

 

Siegel, J. M. [1999] The evolution of REM sleep (pp. 87-100). Boca Raton, FL: CRC Press. 

 

Snyder, F. [1970] The phenomenology of dreaming. In L. Madow & L. Snow (Eds.), The 

psychodynamic implications of the physiological studies on dreams (pp. 124-151). Springfield, IL: 

Thomas. 

 

Ram, A., & Santamaria, J. C. [1997]  Continuous case-based reasoning. Artificial Intelligence, 

90(1), 25-77.  

 

Squire, L. R., & Alvarez, P. [1995] Retrograde amnesia and memory consolidation: a 

neurobiological perspective. Current opinion in neurobiology, 5(2), 169-177. 

 

Tulving, E. [1983]  Elements of episodic memory (p. 123). Oxford: Clarendon Press. 

 

Wilson, M.A., McNaughton, B.L. [1994]  Reactivation of hippocampal ensemble memories during 

sleep. Science 265:676-679. 

 

Wolf, F. A. [1994] The dreaming universe. Psychological Perspectives, 30(1), 36-41. 

 

Zhang, Q. [2009] A computational account of dreaming: learning and memory consolidation. 

Cognitive Systems Research, 10(2), 91-101. 


